diff --git a/content/publication/2024-decade-review-cellpainting.md b/content/publication/2024-decade-review-cellpainting.md new file mode 100644 index 000000000..64f09aa04 --- /dev/null +++ b/content/publication/2024-decade-review-cellpainting.md @@ -0,0 +1,15 @@ ++++ +bibtex_type = "article" +author="Seal S, Trapotsi MA, Spjuth O, Singh S, Carreras-Puigvert J, Greene N, Bender A, Carpenter AE" +title="A Decade in a Systematic Review: The Evolution and Impact of Cell Painting" +journal="bioRxiv" +year="2024" +date="2024-05-04T00:00:00+02:00" +volume="2024.05.04.592531" +number="" +preprint = true +pages="" +abstract="High-content image-based assays have fueled significant discoveries in the life sciences in the past decade (2013-2023), including novel insights into disease etiology, mechanism of action, new therapeutics, and toxicology predictions. Here, we systematically review the substantial methodological advancements and applications of Cell Painting. Advancements include improvements in the Cell Painting protocol, assay adaptations for different types of perturbations and applications, and improved methodologies for feature extraction, quality control, and batch effect correction. Moreover, machine learning methods recently surpassed classical approaches in their ability to extract biologically useful information from Cell Painting images. Cell Painting data have been used alone or in combination with other -omics data to decipher the mechanism of action of a compound, its toxicity profile, and many other biological effects. Overall, key methodological advances have expanded the ability of Cell Painting to capture cellular responses to various perturbations. Future advances will likely lie in advancing computational and experimental techniques, developing new publicly available datasets, and integrating them with other high-content data types." +doi="10.1101/2024.05.04.592531" +url_html="" ++++ \ No newline at end of file