-
Notifications
You must be signed in to change notification settings - Fork 46
/
cdc_uart.c
269 lines (244 loc) · 8.38 KB
/
cdc_uart.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
* This file is part of the Black Magic Debug project.
*
* Based on work that is Copyright (C) 2017 Black Sphere Technologies Ltd.
* Copyright (C) 2017 Dave Marples <[email protected]>
* Copyright (C) 2023 Patrick H Dussud
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "dirtyJtagConfig.h"
#if ( CDC_UART_INTF_COUNT > 0 )
#include <pico/stdlib.h>
#include <hardware/dma.h>
#include <hardware/irq.h>
#include "led.h"
#include "tusb.h"
#include "cdc_uart.h"
static uint8_t tx_bufs[2][TX_BUFFER_SIZE] __attribute__((aligned(TX_BUFFER_SIZE)));
static struct uart_device
{
uart_inst_t *inst;
uint8_t *tx_buf;
volatile uint8_t rx_buf[RX_BUFFER_SIZE];
uint rx_dma_channel;
uint tx_dma_channel;
volatile uint8_t *tx_write_address;
uint8_t *rx_read_address;
uint n_checks;
uint is_connected;
} uart_devices[2];
static void dma_handler();
static uint n_bits(uint n)
{
int i;
for (i = 0; i < 31; i++)
{
n >>= 1;
if (n == 0)
break;
}
return i+1;
}
uint setup_usart_tx_dma(uart_inst_t *uart, void *tx_address, uint buffer_size)
{
uint dma_chan = dma_claim_unused_channel(true);
// Tell the DMA to raise IRQ line 1 when the channel finishes a block
dma_channel_set_irq1_enabled(dma_chan, true);
// enable DMA TX
hw_write_masked(&uart_get_hw(uart)->dmacr, 1 << UART_UARTDMACR_TXDMAE_LSB, UART_UARTDMACR_TXDMAE_BITS);
dma_channel_config c = dma_channel_get_default_config(dma_chan);
channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
channel_config_set_read_increment(&c, true);
channel_config_set_write_increment(&c, false);
channel_config_set_dreq(&c, uart_get_dreq(uart, true));
channel_config_set_ring(&c, false, n_bits(buffer_size - 1));
dma_channel_configure(
dma_chan,
&c,
&uart_get_hw(uart)->dr, // Write Ad
tx_address, // Read Address
0, // transfer count
false // start
);
return dma_chan;
}
uint setup_usart_rx_dma(uart_inst_t *uart, volatile void *rx_address, irq_handler_t handler, uint buffer_size)
{
uint dma_chan = dma_claim_unused_channel(true);
// Tell the DMA to raise IRQ line 1 when the channel finishes a block
dma_channel_set_irq1_enabled(dma_chan, true);
// Configure the processor to run dma_handler() when DMA IRQ 1 is asserted
irq_add_shared_handler(DMA_IRQ_1, handler, PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY);
irq_set_enabled(DMA_IRQ_1, true);
// enable DMA RX
hw_write_masked(&uart_get_hw(uart)->dmacr, 1 << UART_UARTDMACR_RXDMAE_LSB, UART_UARTDMACR_RXDMAE_BITS);
dma_channel_config c = dma_channel_get_default_config(dma_chan);
channel_config_set_transfer_data_size(&c, DMA_SIZE_8);
channel_config_set_read_increment(&c, false);
channel_config_set_write_increment(&c, true);
channel_config_set_dreq(&c, uart_get_dreq(uart, false));
hw_clear_bits(&uart_get_hw(uart)->rsr, UART_UARTRSR_BITS); // clear
dma_channel_configure(
dma_chan,
&c,
rx_address, // Write Address
&uart_get_hw(uart)->dr, // Read Address
buffer_size, // transfer count
true // start
);
return dma_chan;
}
void cdc_uart_init( int index, uart_inst_t *const uart_, int uart_rx_pin, int uart_tx_pin ) {
uint uart_index;
uart_index = uart_get_index(uart_);
struct uart_device *uart;
uart = &uart_devices[index];
gpio_set_function(uart_tx_pin, GPIO_FUNC_UART);
gpio_set_function(uart_rx_pin, GPIO_FUNC_UART);
gpio_set_pulls(uart_tx_pin, 1, 0);
gpio_set_pulls(uart_rx_pin, 1, 0);
uart->inst = uart_;
uart_init(uart->inst, USBUSART_BAUDRATE);
uart_set_hw_flow(uart->inst, false, false);
uart_set_format(uart->inst, 8, 1, UART_PARITY_NONE);
uart_set_fifo_enabled(uart->inst, true);
uart->tx_buf = tx_bufs[uart_index];
uart->tx_dma_channel = setup_usart_tx_dma(uart->inst, uart->tx_buf, TX_BUFFER_SIZE);
uart->rx_dma_channel = setup_usart_rx_dma(uart->inst, &uart->rx_buf[0], dma_handler, RX_BUFFER_SIZE);
uart->tx_write_address = uart->tx_buf;
uart->rx_read_address = (uint8_t *)&uart->rx_buf[0];
uart->n_checks = 0;
}
// shared between rx_dma_channel and tx_dma_channel
static void dma_handler()
{
volatile uint32_t ints = dma_hw->ints1;
struct uart_device *uart;
for (size_t i = 0; i < CDC_UART_INTF_COUNT; i++)
{
uart = &uart_devices[i];
if (dma_channel_get_irq1_status(uart->rx_dma_channel))
{
dma_channel_set_write_addr(uart->rx_dma_channel, &uart->rx_buf[0], true);
}
if (dma_channel_get_irq1_status(uart->tx_dma_channel))
{
uint8_t *ra = (uint8_t *)(dma_channel_hw_addr(uart->tx_dma_channel)->read_addr);
// cdc_uart_task can modify uart->tx_write_address. cache it locally
volatile uint8_t *l_tx_write_address = uart->tx_write_address;
size_t space = (l_tx_write_address >= ra) ? (l_tx_write_address - ra) : (l_tx_write_address + TX_BUFFER_SIZE - ra);
if (space > 0)
dma_channel_set_trans_count(uart->tx_dma_channel, space, true);
}
}
dma_hw->ints1 = ints;
}
bool cdc_stopped = false;
void cdc_uart_task(void)
{
if (cdc_stopped)
return;
struct uart_device *uart;
for (size_t i = 0; i < CDC_UART_INTF_COUNT; i++)
{
uart = &uart_devices[i];
if (tud_cdc_n_connected(i))
{
uart->is_connected = 1;
int written = 0;
volatile uint8_t *wa = (uint8_t*)(dma_channel_hw_addr(uart->rx_dma_channel)->write_addr);
if (wa == &uart->rx_buf[RX_BUFFER_SIZE])
{
wa = &uart->rx_buf[0];
}
uint32_t space = (wa >= uart->rx_read_address) ? (wa - uart->rx_read_address) : (wa + RX_BUFFER_SIZE - uart->rx_read_address);
uart->n_checks++;
if ((space >= FULL_SWO_PACKET) || ((space != 0) && (uart->n_checks > 4)))
{
led_tx( 1 );
uart->n_checks = 0;
uint32_t capacity = tud_cdc_n_write_available(i);
uint32_t size_out = MIN(space, capacity);
if (capacity >= FULL_SWO_PACKET)
{
uint32_t written = tud_cdc_n_write(i, uart->rx_read_address, size_out);
if (space < FULL_SWO_PACKET)
tud_cdc_n_write_flush(i);
tud_task();
uart->rx_read_address += written;
if (uart->rx_read_address >= &uart->rx_buf[RX_BUFFER_SIZE])
uart->rx_read_address -= RX_BUFFER_SIZE;
}
led_tx( 0 );
}
uint ra = tud_cdc_n_available(i);
size_t watermark = MIN(ra, &uart->tx_buf[TX_BUFFER_SIZE] - uart->tx_write_address);
if (watermark > 0)
{
led_rx( 1 );
size_t tx_len;
tx_len = tud_cdc_n_read(i, (void*)uart->tx_write_address, watermark);
//be careful about modifying tx_write_address as it is used in the IRQ handler
volatile uint8_t *l_tx_write_address = uart->tx_write_address + tx_len;
if (l_tx_write_address >= &uart->tx_buf[TX_BUFFER_SIZE])
uart->tx_write_address = l_tx_write_address - TX_BUFFER_SIZE;
else
uart->tx_write_address = l_tx_write_address;
// restart dma if not active
if (!dma_channel_is_busy(uart->tx_dma_channel))
{
uint8_t *ra = (uint8_t *)(dma_channel_hw_addr(uart->tx_dma_channel)->read_addr);
size_t space = (uart->tx_write_address >= ra) ? (uart->tx_write_address - ra) : (uart->tx_write_address + TX_BUFFER_SIZE - ra);
if (space > 0)
dma_channel_set_trans_count(uart->tx_dma_channel, space, true);
}
led_rx( 0 );
}
}
else if (uart->is_connected)
{
tud_cdc_n_write_clear(i);
uart->is_connected = 0;
}
}
}
void tud_cdc_line_coding_cb(uint8_t itf, cdc_line_coding_t const* line_coding)
{
struct uart_device *uart;
for (size_t i = 0; i < CDC_UART_INTF_COUNT; i++)
{
uart = &uart_devices[i];
if (i == itf)
{
uart_deinit(uart->inst);
tud_cdc_n_write_clear(itf);
tud_cdc_n_read_flush(itf);
uart_init(uart->inst, line_coding->bit_rate);
}
}
}
void tud_cdc_line_state_cb(uint8_t itf, bool dtr, bool rts)
{
//if (itf != UART_PORT_ITF)
return;
/* CDC drivers use linestate as a bodge to activate/deactivate the interface.
* Resume our UART polling on activate, stop on deactivate */
// DTR RTS not so
// if (!dtr && !rts)
// cdc_stopped = true;
// else
// cdc_stopped = false;
}
#endif // CDC_UART_INTF_COUNT