-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizations.nb
1960 lines (1933 loc) · 99.9 KB
/
visualizations.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 102136, 1952]
NotebookOptionsPosition[ 100341, 1916]
NotebookOutlinePosition[ 100700, 1932]
CellTagsIndexPosition[ 100657, 1929]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"interactive", " ", "projection", " ", "graphic"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"size", "=", "10"}], ";"}], "\[IndentingNewLine]",
RowBox[{"Slider", "[",
RowBox[{
RowBox[{"Dynamic", "[", "d", "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"Slider", "[",
RowBox[{
RowBox[{"Dynamic", "[", "r", "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "20"}], ",", "20"}], "}"}]}], "]"}],
"\[IndentingNewLine]",
RowBox[{"Dynamic", "[",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"Sqrt", "[",
FractionBox[
RowBox[{
SuperscriptBox["y", "2"], "-",
SuperscriptBox["x", "2"]}],
RowBox[{
SuperscriptBox["d", "4"], "-",
RowBox[{"4",
SuperscriptBox["d", "2"]}], "-", "4"}]], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "size"}], ",", "size"}], "}"}]}], ",",
RowBox[{"BoxRatios", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", " ", "1", ",", " ", "1"}], "}"}]}], ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",", " ",
RowBox[{"Boxed", "\[Rule]", "False"}], ",",
RowBox[{"ClippingStyle", "\[Rule]", "None"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Cyan"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"-",
RowBox[{"Sqrt", "[",
FractionBox[
RowBox[{
SuperscriptBox["y", "2"], "-",
SuperscriptBox["x", "2"]}],
RowBox[{
SuperscriptBox["d", "4"], "-",
RowBox[{"4",
SuperscriptBox["d", "2"]}], "-", "4"}]], "]"}]}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "size"}], ",", "size"}], "}"}]}], ",",
RowBox[{"ClippingStyle", "\[Rule]", "None"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Cyan"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
FractionBox[
RowBox[{"y", "-", "x"}], "r"], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "size"}], ",", "size"}], "}"}]}], ",",
RowBox[{"ClippingStyle", "\[Rule]", "None"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",",
RowBox[{"Opacity", "[", "0.5", "]"}]}], "]"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.0075", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"InfiniteLine", "[",
RowBox[{"{", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "0"}], "}"}]}], " ", "}"}], "]"}]}],
" ",
RowBox[{"(*", " ",
RowBox[{"the", " ", "point", " ", "at", " ", "infinity"}], " ",
"*)"}], "\[IndentingNewLine]", "}"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.0075", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"InfiniteLine", "[",
RowBox[{"{", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "r"}], ",", "1"}], "}"}]}], " ", "}"}], "]"}]}],
" ",
RowBox[{"(*", " ",
RowBox[{"choose", " ", "r"}], " ", "*)"}], "\[IndentingNewLine]",
"}"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"Thickness", "[", "0.0075", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"InfiniteLine", "[",
RowBox[{"{", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox["d", "4"], "-",
RowBox[{"4",
SuperscriptBox["d", "2"]}], "-", "4", "+",
SuperscriptBox["r", "2"]}], ",",
RowBox[{
SuperscriptBox["d", "4"], "-",
RowBox[{"4",
SuperscriptBox["d", "2"]}], "-", "4", "-",
SuperscriptBox["r", "2"]}], ",",
RowBox[{"2", "r"}]}], "}"}]}], " ", "}"}], "]"}]}], " ",
RowBox[{"(*", " ", "intersection", " ", "*)"}], "\[IndentingNewLine]",
"}"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"EdgeForm", "[", "]"}], ",",
RowBox[{"InfinitePlane", "[",
RowBox[{"{", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], " ", "}"}], "]"}]}],
"}"}], "]"}], "\[IndentingNewLine]", ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}], "]"}]}]}]], "Input",\
CellChangeTimes->{{3.7177748561843653`*^9, 3.717774861056409*^9}, {
3.717774891169964*^9, 3.717774924753408*^9}, {3.717774963215868*^9,
3.7177750274653683`*^9}, {3.717775107874674*^9, 3.717775247575862*^9}, {
3.717775279974163*^9, 3.717775343405612*^9}, {3.717775409020821*^9,
3.717775459123045*^9}, {3.717775492394055*^9, 3.717775549892475*^9}, {
3.7177847991191463`*^9, 3.717784863854031*^9}, 3.717784901645557*^9, {
3.717784970388034*^9, 3.717784980719227*^9}, {3.717785039635292*^9,
3.717785094751217*^9}, {3.717785130672814*^9, 3.717785151240337*^9}, {
3.7177852479335337`*^9, 3.7177852809056873`*^9}, {3.717785338749593*^9,
3.71778535963909*^9}, {3.717785451617421*^9, 3.717785475864834*^9}, {
3.7177855421718616`*^9, 3.717785550235237*^9}, {3.71778559515615*^9,
3.717785596458127*^9}, {3.7177856863695393`*^9, 3.7177857291525793`*^9}, {
3.717785789997965*^9, 3.71778584293384*^9}, {3.7177859218200493`*^9,
3.717786016970543*^9}, {3.717786069946012*^9, 3.717786125129743*^9}, {
3.7177861564681263`*^9, 3.7177861570643663`*^9}, {3.7177862523491173`*^9,
3.717786259303155*^9}, {3.717786305619549*^9, 3.717786313036105*^9}, {
3.717786409867281*^9, 3.717786466434753*^9}, {3.71778656507156*^9,
3.717786598783927*^9}, {3.717786652402431*^9, 3.7177867362190447`*^9}, {
3.717786766892754*^9, 3.717786877026279*^9}, {3.717786948680973*^9,
3.717787050261344*^9}, {3.717787120614382*^9, 3.717787121355399*^9}, {
3.7177871763923407`*^9, 3.7177871788947067`*^9}, {3.717787235429655*^9,
3.717787259855876*^9}, {3.7177873113615017`*^9, 3.7177873200718117`*^9}, {
3.717787379634062*^9, 3.7177873803574667`*^9}, {3.7177874352171783`*^9,
3.7177874981536703`*^9}, {3.7177876054439497`*^9, 3.717787642149494*^9}, {
3.717787687455223*^9, 3.717787819043111*^9}, 3.717788041903954*^9, {
3.717788088863511*^9, 3.717788105502458*^9}, {3.717788135962219*^9,
3.717788138120058*^9}, {3.717788790143669*^9, 3.717788796614291*^9}, {
3.718041968296598*^9, 3.718041980280896*^9}, {3.718042582887576*^9,
3.718042592507122*^9}, {3.718116190117013*^9, 3.718116191107642*^9}, {
3.7181163592184477`*^9, 3.718116359863517*^9}, {3.718116607009486*^9,
3.71811661033471*^9}},ExpressionUUID->"8c32fcee-4b82-4345-bbc5-\
a0f1c749ce11"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"Exports", " ", "a", " ", "video", " ", "to", " ", "this", " ",
RowBox[{"(", "v", ")"}], " ", "directory"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
"SetDirectory", "[", "\"\</Users/peterillig/Documents/Carleton/comps\>\"",
"]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"VID", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"size", "=", "10"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"d", "=", "1.6"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Do", "[", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{"VID", ",",
RowBox[{"Rasterize", "[",
RowBox[{
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"Sqrt", "[",
FractionBox[
RowBox[{
SuperscriptBox["y", "2"], "-",
SuperscriptBox["x", "2"]}],
RowBox[{
SuperscriptBox["d", "4"], "-",
RowBox[{"4",
SuperscriptBox["d", "2"]}], "-", "4"}]], "]"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "size"}], ",", "size"}], "}"}]}], ",",
RowBox[{"BoxRatios", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", " ", "1", ",", " ", "1"}], "}"}]}], ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",", " ",
RowBox[{"Boxed", "\[Rule]", "False"}], ",",
RowBox[{"ClippingStyle", "\[Rule]", "None"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Cyan"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"-",
RowBox[{"Sqrt", "[",
FractionBox[
RowBox[{
SuperscriptBox["y", "2"], "-",
SuperscriptBox["x", "2"]}],
RowBox[{
SuperscriptBox["d", "4"], "-",
RowBox[{"4",
SuperscriptBox["d", "2"]}], "-", "4"}]], "]"}]}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "size"}], ",", "size"}], "}"}]}], ",",
RowBox[{"ClippingStyle", "\[Rule]", "None"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Cyan"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot3D", "[",
RowBox[{
FractionBox[
RowBox[{"y", "-", "x"}], "r"], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "size"}], ",", "size"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "size"}], ",", "size"}], "}"}]}], ",",
RowBox[{"ClippingStyle", "\[Rule]", "None"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Gray", ",",
RowBox[{"Opacity", "[", "0.5", "]"}]}], "]"}]}]}], "]"}],
",", "\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.0075", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"InfiniteLine", "[",
RowBox[{"{", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"1", ",", "1", ",", "0"}], "}"}]}], " ", "}"}],
"]"}]}], " ",
RowBox[{"(*", " ",
RowBox[{"the", " ", "point", " ", "at", " ", "infinity"}],
" ", "*)"}], "\[IndentingNewLine]", "}"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.0075", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"InfiniteLine", "[",
RowBox[{"{", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "r"}], ",", "1"}], "}"}]}], " ", "}"}],
"]"}]}], " ",
RowBox[{"(*", " ",
RowBox[{"choose", " ", "r"}], " ", "*)"}],
"\[IndentingNewLine]", "}"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"Thickness", "[", "0.0075", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"InfiniteLine", "[",
RowBox[{"{", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox["d", "4"], "-",
RowBox[{"4",
SuperscriptBox["d", "2"]}], "-", "4", "+",
SuperscriptBox["r", "2"]}], ",",
RowBox[{
SuperscriptBox["d", "4"], "-",
RowBox[{"4",
SuperscriptBox["d", "2"]}], "-", "4", "-",
SuperscriptBox["r", "2"]}], ",",
RowBox[{"2", "r"}]}], "}"}]}], " ", "}"}], "]"}]}], " ",
RowBox[{"(*", " ", "intersection", " ", "*)"}],
"\[IndentingNewLine]", "}"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Graphics3D", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Opacity", "[", "0.5", "]"}], ",",
RowBox[{"EdgeForm", "[", "]"}], ",",
RowBox[{"InfinitePlane", "[",
RowBox[{"{", " ",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], " ", "}"}],
"]"}]}], "}"}], "]"}], "\[IndentingNewLine]", ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}], ",",
RowBox[{"RasterSize", "\[Rule]", "1000"}]}], "]"}]}], "]"}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"r", ",", "1.5", ",", "10", ",",
FractionBox["1", "16"]}], "}"}]}], "]"}], ";"}],
"\[IndentingNewLine]",
RowBox[{"AbsoluteTiming", "[",
RowBox[{"Export", "[",
RowBox[{"\"\<projection.mov\>\"", ",", "VID"}], "]"}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.7177878626324587`*^9, 3.717787876961027*^9}, {
3.717787995234461*^9, 3.717788012404869*^9}, {3.717788152670676*^9,
3.717788230965376*^9}, {3.71778831283213*^9, 3.717788313088746*^9}, {
3.717788388293714*^9, 3.7177883933272877`*^9}, {3.71778845207169*^9,
3.7177884534280787`*^9}, {3.717788704278757*^9, 3.717788705603695*^9}, {
3.717788748373369*^9, 3.7177888088254547`*^9}, 3.717868520401804*^9, {
3.725505243839509*^9, 3.7255052575109797`*^9}, 3.725505459647482*^9, {
3.725505750066889*^9,
3.725505750267394*^9}},ExpressionUUID->"9995d2e3-7b2c-43a2-a413-\
d1ec580ec305"],
Cell[BoxData[
TemplateBox[{
"Export","erropts",
"\"The value \\!\\(\\*RowBox[{\\\"\\\\\\\"Cinepak\\\\\\\"\\\"}]\\) \
specified for the option \
\\!\\(\\*RowBox[{\\\"\\\\\\\"\\\\\\\\\\\\\\\"VideoEncoding\\\\\\\\\\\\\\\"\\\\\
\\\"\\\"}]\\) is invalid.\"",2,76,99,28377408422154661803,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.725505710953298*^9},ExpressionUUID->"7b2f9cd1-2b21-4d8c-8024-\
261ed0d48e71"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.558995`", ",", "$Failed"}], "}"}]], "Output",
CellChangeTimes->{{3.717788301601109*^9, 3.71778832328511*^9},
3.717788421092753*^9, 3.717788559247006*^9, 3.7177889888085537`*^9,
3.725505447220825*^9,
3.725505710991152*^9},ExpressionUUID->"5323b711-ad56-468d-b9a5-\
3af132a93af3"]
}, Open ]],
Cell[BoxData["\[IndentingNewLine]"], "Input",
CellChangeTimes->{
3.718752580826992*^9},ExpressionUUID->"f959cd00-e7ec-4549-a346-\
fb82f681b310"],
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{
"visualize", " ", "over", " ", "r", " ", "and", " ", "s", " ", "which", " ",
"polynomials", " ", "have", " ",
RowBox[{"f", "^", "3"}], " ", "newly", " ", "reducible"}], " ",
"*)"}]], "Input",
CellChangeTimes->{{3.718743749249569*^9,
3.718743777349329*^9}},ExpressionUUID->"3449c418-ecf5-4533-a9e4-\
ce71968e138e"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"dmax", "=", "50"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"T", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "dmax"}], ",", "dmax"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Do", "[",
RowBox[{
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"r", "\[Equal]", "0"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{
RowBox[{"T", "[",
RowBox[{"[",
RowBox[{
RowBox[{"-", "d"}], "+", "dmax", "+", "1"}], "]"}], "]"}], ",",
"3"}], "]"}], ";"}], "\[IndentingNewLine]", ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"m", "=",
RowBox[{
RowBox[{"\[Phi]", "[",
RowBox[{"r", ",", "d"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"\[Gamma]", "=",
RowBox[{"gamma", "[",
RowBox[{"m", ",", "d"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"f", "[", "x_", "]"}], ":=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Gamma]"}], ")"}], "2"], "+", "\[Gamma]",
"+", "m"}]}], ";", "\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{"\[Not]",
RowBox[{"IrreduciblePolynomialQ", "[",
RowBox[{"f", "[", "x", "]"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{
RowBox[{"T", "[",
RowBox[{"[",
RowBox[{
RowBox[{"-", "d"}], "+", "dmax", "+", "1"}], "]"}], "]"}],
",", "0"}], "]"}], ";"}], "\[IndentingNewLine]", ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"\[Not]",
RowBox[{"IrreduciblePolynomialQ", "[",
RowBox[{"f", "[",
RowBox[{"f", "[", "x", "]"}], "]"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{
RowBox[{"T", "[",
RowBox[{"[",
RowBox[{
RowBox[{"-", "d"}], "+", "dmax", "+", "1"}], "]"}], "]"}],
",", "1"}], "]"}], ";"}], "\[IndentingNewLine]", ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{
RowBox[{"T", "[",
RowBox[{"[",
RowBox[{
RowBox[{"-", "d"}], "+", "dmax", "+", "1"}], "]"}], "]"}],
",", "2"}], "]"}], ";"}]}], "\[IndentingNewLine]", "]"}],
";"}]}], "\[IndentingNewLine]", "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}], ";"}], "\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"r", ",", "1000", ",", "1600"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"d", ",", "50", ",",
RowBox[{"-", "50"}], ",",
RowBox[{"-", "1"}]}], "}"}]}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.718743630664062*^9, 3.718743743482291*^9}, {
3.718743797579115*^9, 3.718743803391632*^9}, {3.718743854891549*^9,
3.71874389399181*^9}, {3.718744058559016*^9, 3.718744081980563*^9}, {
3.7187442055633783`*^9, 3.718744215121437*^9}, 3.7187443353873863`*^9, {
3.7187443780357428`*^9, 3.7187443810772142`*^9}, {3.718744740088822*^9,
3.718744741533633*^9}, {3.718744817530604*^9, 3.718744847314597*^9}, {
3.7187457341742897`*^9, 3.718745753545542*^9}, {3.718745803779389*^9,
3.718745806784644*^9}, {3.718746221636032*^9, 3.7187462234791*^9}, {
3.718746744379375*^9, 3.718746768129199*^9}, {3.718747104653805*^9,
3.718747135442264*^9}, 3.718747224080145*^9, {3.718748742727215*^9,
3.718748795949356*^9}, {3.718918510207828*^9, 3.7189185303911037`*^9}, {
3.7226676849167633`*^9, 3.722667688356183*^9}, {3.722667738359861*^9,
3.7226677442522173`*^9}},ExpressionUUID->"b278f0de-af47-4420-9422-\
5350be388835"],
Cell[BoxData["$Aborted"], "Output",
CellChangeTimes->{
3.722667811015875*^9},ExpressionUUID->"f02a546f-91bf-4814-9ff0-\
aa173d48294b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"white", " ", "=", " ",
RowBox[{"reducible", " ", "f"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"light", " ", "grey"}], " ", "=", " ",
RowBox[{"newly", " ", "reducible", " ",
RowBox[{"f", "^", "2"}], " ",
RowBox[{"(",
RowBox[{"none", " ", "in", " ", "this", " ", "plot"}], ")"}]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"grey", " ", "=", " ",
RowBox[{"newly", " ", "reducible", " ",
RowBox[{"f", "^", "3"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"black", " ", "=", " ",
RowBox[{"r", "\[Equal]", "0"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{
"horizontal", " ", "axis", " ", "is", " ", "r", " ", "going", " ",
"from"}], " ", "-",
RowBox[{"size", " ", "to"}], " ", "+", "size"}]}], "\[IndentingNewLine]",
"*)"}], "\[IndentingNewLine]",
RowBox[{"ArrayPlot", "[", "T", "]"}]}]], "Input",
CellChangeTimes->{{3.7187438632893257`*^9, 3.718743866768141*^9}, {
3.718743999053763*^9, 3.718744049028489*^9}, {3.7187446840887423`*^9,
3.7187446857416*^9}, {3.718745108027532*^9, 3.718745169002507*^9}, {
3.7187456900123873`*^9, 3.718745697402533*^9}, {3.718745851631563*^9,
3.718745861957438*^9}, {3.718918616568199*^9, 3.718918621094318*^9}, {
3.718918960962758*^9,
3.7189189798572893`*^9}},ExpressionUUID->"c632582f-e681-4b23-8048-\
36f3d3a03b10"],
Cell[BoxData[
GraphicsBox[RasterBox[CompressedData["
1:eJztnG1OQyEURF/YiVtyCU387TrdlcZobJ/vAx4z3ENhEqMpl4F7hqaWJn25
vb/e0rIsb18/H8vU1NTUlENpST+//x55HI9UuttBWj2+rtua61U5u+097e+0
rgcHvaMdne12j0cUv3O6efzLdqUleK1GV+dlWFdZ46CmWFr7vz6WYzn1um7j
vK/MobEsm0WjqZjncL2+F0cXEUT1fUQxVXcSSVXbSzRXZTcEsrp+KGxVHZHo
ksiQTgyN8HMyptHRedE469xopJ+ZNZG20o/HWysecT5z2qkinism9z7I884X
84RR6ffDn3jSeP9z+RxVrtwUxsqBncRoWdDT+HZ7FoXQc3iO9hxRe7k8R8yl
j2T6cHS49pHOuPn0QtPj6nvPPurzyOPrvFvpISmff19Z9ZcWPy/3Ku0So94C
tLoZJqfWZq3WuRFvYdreM0RlR7oTjvnkh5ZfxMqxCVI+G6pxqd0BI8U6h+j1
NT6EJBVu0VnqPCPTVDu3y9Ndf3VOu3nlq8S8fpXMZ6Sa55q/NinXnFrHewNV
ssc+9GxzZh45nq3mTzetxtLGaK5L2cj5aF5FftVvZbr7e89hyzEq4TrRv/PB
IUfKdLG/F2Vqamrqgj4BsfMG1Q==
"], {{0, 0}, {201, 101}}, {0, 2}],
Frame->Automatic,
FrameLabel->{None, None},
FrameTicks->{{None, None}, {None, None}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{578.7336664503466, Automatic},
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultPlotStyle" ->
Automatic}]], "Output",
CellChangeTimes->{3.718744793884317*^9, 3.718744828451952*^9,
3.718745082185266*^9, 3.7187460533526*^9, 3.718746722779352*^9,
3.718747056573992*^9, 3.718747121449376*^9, 3.718748700765251*^9,
3.718748779220675*^9, 3.718748960394153*^9,
3.7226677245358477`*^9},ExpressionUUID->"d8eeaad3-551f-4015-8043-\
9d89e0e94b8e"]
}, Open ]],
Cell[BoxData["."], "Input",
CellChangeTimes->{
3.722667810601263*^9},ExpressionUUID->"2158f7b6-af62-45ce-8cef-\
e82809e390b9"],
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{
"visualize", " ", "over", " ", "m", " ", "and", " ", "\[Gamma]", " ",
"which", " ", "polynomials", " ", "have", " ",
RowBox[{"f", "^", "3"}], " ", "newly", " ", "reducible"}], " ",
"*)"}]], "Input",
CellChangeTimes->{{3.718743749249569*^9, 3.718743777349329*^9}, {
3.718918446052175*^9,
3.7189184491137733`*^9}},ExpressionUUID->"3e8d3d33-2755-4df2-bc4a-\
3c23402c48c7"],
Cell[BoxData[{
RowBox[{
RowBox[{"gmax", "=", "400"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"T", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{", "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"-", "gmax"}], ",", "gmax"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Do", "[",
RowBox[{
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"f", "[", "x_", "]"}], ":=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "\[Gamma]"}], ")"}], "2"], "+", "\[Gamma]", "+",
"m"}]}], ";", "\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{"\[Not]",
RowBox[{"IrreduciblePolynomialQ", "[",
RowBox[{"f", "[", "x", "]"}], "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{
RowBox[{"T", "[",
RowBox[{"[",
RowBox[{
RowBox[{"-", "\[Gamma]"}], "+", "gmax", "+", "1"}], "]"}],
"]"}], ",", "0"}], "]"}], ";"}], "\[IndentingNewLine]", ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"\[Not]",
RowBox[{"IrreduciblePolynomialQ", "[",
RowBox[{"f", "[",
RowBox[{"f", "[", "x", "]"}], "]"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{
RowBox[{"T", "[",
RowBox[{"[",
RowBox[{
RowBox[{"-", "\[Gamma]"}], "+", "gmax", "+", "1"}], "]"}],
"]"}], ",", "1"}], "]"}], ";"}], "\[IndentingNewLine]", ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"\[Not]",
RowBox[{"IrreduciblePolynomialQ", "[",
RowBox[{"f", "[",
RowBox[{"f", "[",
RowBox[{"f", "[", "x", "]"}], "]"}], "]"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{
RowBox[{"T", "[",
RowBox[{"[",
RowBox[{
RowBox[{"-", "\[Gamma]"}], "+", "gmax", "+", "1"}], "]"}],
"]"}], ",", "2"}], "]"}], ";"}], "\[IndentingNewLine]",
",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"AppendTo", "[",
RowBox[{
RowBox[{"T", "[",
RowBox[{"[",
RowBox[{
RowBox[{"-", "\[Gamma]"}], "+", "gmax", "+", "1"}], "]"}],
"]"}], ",", "3"}], "]"}], ";"}]}], "\[IndentingNewLine]",
"]"}], ";"}]}], "\[IndentingNewLine]", "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}], ";"}], "\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"m", ",",
RowBox[{"-", "400"}], ",", "400"}], "}"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "gmax", ",",
RowBox[{"-", "gmax"}], ",",
RowBox[{"-", "1"}]}], "}"}]}], "]"}], ";"}]}], "Input",
CellChangeTimes->{{3.718743630664062*^9, 3.718743743482291*^9}, {
3.718743797579115*^9, 3.718743803391632*^9}, {3.718743854891549*^9,
3.71874389399181*^9}, {3.718744058559016*^9, 3.718744081980563*^9}, {
3.7187442055633783`*^9, 3.718744215121437*^9}, 3.7187443353873863`*^9, {
3.7187443780357428`*^9, 3.7187443810772142`*^9}, {3.718744740088822*^9,
3.718744741533633*^9}, {3.718744817530604*^9, 3.718744847314597*^9}, {
3.7187457341742897`*^9, 3.718745753545542*^9}, {3.718745803779389*^9,
3.718745806784644*^9}, {3.718746221636032*^9, 3.7187462234791*^9}, {
3.718746744379375*^9, 3.718746768129199*^9}, {3.718747104653805*^9,
3.718747135442264*^9}, 3.718747224080145*^9, {3.718748742727215*^9,
3.718748795949356*^9}, {3.718918452540112*^9, 3.718918501600451*^9}, {
3.718918559509404*^9, 3.718918590137473*^9}, {3.718918754202004*^9,
3.718918757929476*^9}, {3.718919031177372*^9, 3.718919046231243*^9}, {
3.718919328799438*^9, 3.718919370606654*^9}, {3.71891978689246*^9,
3.718919796899939*^9}},ExpressionUUID->"e572bf7b-ea90-4a5e-b228-\
fd06937898fc"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"red", " ", "=", " ",
RowBox[{"reducible", " ", "f"}]}], ";", "\[IndentingNewLine]",
RowBox[{"yellow", " ", "=", " ",
RowBox[{"newly", " ", "reducible", " ",
RowBox[{"f", "^", "2"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"white", " ", "=", " ",
RowBox[{"newly", " ", "reducible", " ",
RowBox[{"f", "^", "3"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"black", " ", "=", " ",
RowBox[{"irreducible", " ",
RowBox[{"f", "^", "3"}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"horizontal", " ", "axis", " ", "is", " ", "m"}]}],
"\[IndentingNewLine]", "*)"}], "\[IndentingNewLine]",
RowBox[{"ArrayPlot", "[",
RowBox[{"T", ",",
RowBox[{"ColorRules", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"0", "\[Rule]", "Red"}], ",",
RowBox[{"1", "\[Rule]", "Yellow"}], ",",
RowBox[{"2", "\[Rule]", "White"}], ",",
RowBox[{"3", "\[Rule]", "Black"}]}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.718918536398879*^9, 3.71891853914851*^9}, {
3.7189189050754013`*^9, 3.718918947144372*^9}, {3.718919007810169*^9,
3.7189190189520397`*^9}, {3.7189193754303007`*^9, 3.718919389419877*^9}, {
3.718919675049905*^9, 3.71891971879475*^9}, {3.718919751061854*^9,
3.718919762187585*^9}},ExpressionUUID->"cd9d95cd-abcc-42b5-84d2-\
fff1eac98a2e"],
Cell[BoxData[
GraphicsBox[RasterBox[CompressedData["
1:eJzs3E2u5GCSJdYGeiVaifagJQjQWFvXEgSBeBOx2pP8WGZhP+cABdQoMmh2
7brDM5L/2//5f/8f/9f//B//43/8b//z+r//7/+ngv/nf//XfwOA2vQksI3e
A7rTY0A1egmIpmeAt/QGoAdgHncN9blTyOfu4Dt3BHfugg3knI7klgrkkAhy
xRNyspO9z2CPNdlLDnM+Y26XqXPo8lz/6u/53/Wf+7/6c7rMfyrzB/hNTwLb
6D2gOz0GVKOXgGh6BnhLbwB6AOZx11CfO4V87g6+c0dw5y7YQM7pSG6pQA6J
IFc8ISc72fsM9liTveQw5zPmdpk6hy7P5f1XRDB/gN/0JLCN3gO602NANXoJ
+F/564evPaFngLf0BqAHYB53DfW5U8jn7uA7dwR37oIN5JyO5JYK5JAIcsUT
crKTvc9gjzXZSw5zPmNul6lz6PJc3n9FBPMH+E1PAtvoPaA7PQZUo5eAaHoG
eEtvAHoA5nHXUJ87hXzuDr5zR3DnLthAzulIbqlADokgVzwhJzvZ+wz2WJO9
5DDnM+Z2mTqHLs/l/VdEMH+A3/QksI3eA7rTY0A1egmIpmeAt/QGoAdgHncN
9blTyOfu4Dt3BHfugg3knI7klgrkkAhyxRNyspO9z2CPNdlLDnM+Y26XqXPo
8lzef0UE8wf4TU8C2+g9oDs9BlSjl4Bo/+m/f9FDwP+fXgD0AMzjrqE+dwr5
3B18547gzl2wgZzTkdxSgRwSQa54Qk52svcZ7LEme8lhzmfM7TJ1Dl2ey/uv
iGD+AL/pSWAbvQd0p8eAavQSEE3PAG/pDUAPwDzuGupzp5DP3cF37gju3AUb
yDkdyS0VyCER5Ion5GQne5/BHmuylxzmfMbcLlPn0OW5vP+KCOYP8JueBLbR
e0B3egyoRi8B0fQM8JbeAKb2wN9zTX0++EXuoT53CvncHXznjuDOXbCBnNOR
3FKBHBJBrnhCTnay9xnssSZ7yWHOZ8ztMnUOXZ7L+6+IYP4Av+lJYBu9B3Sn
x4Bq9BIQ7V//90d6Dvpxt4AegHncNdTnTiGfu4Pv3BHcuQs2kHM6klsqkEMi
yBVPyMlO9j6DPdZkLznM+Yy5XabOoctz/ev//ULUn9Nl/lOZP8BvehLYRu8B
3ekxoBq9BETTM8BbegPQAzCPu4b63Cnkc3fwnTuCO3fBBnJOR3JLBXJIBLni
CTnZyd5nsMea7CWHOZ8xt8vUOXR5Lu+/IoL5A/ymJ4Ft9B7QnR4DqtFLQDQ9
A7ylNwA9APO4a6jPnUI+dwffuSO4cxdsIOd0JLdUIIdEkCuekJOd7H0Ge6zJ
XnKY8xlzu0ydQ5fn8v4rIpg/wG96EthG7wHd6TGgGr0ERJvaM3/PNfX54F9y
V4AegHncNdTnTiGfu4Pv3BHcuQs2kHM6klsqkEMiyBVPyMlO9j6DPdZkLznM
+Yy5XabOoctzef8VEcwf4Dc9CWyj94Du9BhQjV4CoukZ4C29AegBmMddQ33u
FPK5O/jOHcGdu2ADOacjuaUCOSSCXPGEnOxk7zPYY032ksOcz5jbZeocujyX
918RwfwBftOTwDZ6D+hOjwHV6CUgmp4B3tIbgB6Aedw11OdOIZ+7g+/cEdy5
CzaQczqSWyqQQyLIFU/IyU72PoM91mQvOcz5jLldps6hy3N5/xURzB/gNz0J
bKP3gO70GFCNXgKi6Zkzf3MzPzaSe0APEMH3q3/L3KE+dwr53B18547gzl2w
gZzTkdxSgRwSQa54Qk52svcZ7LEme8lhzmfM7TJ1Dl2ey/uviGD+AL/pSWAb
vQd0p8eAavQSEE3PAG/pDUAPwDzuGupzp5DP3cF37gju3AUbyDkdyS0VyCER
5Ion5GQne5/BHmuylxzmfMbcLlPn0OW5vP+KCOYP8JueBLbRe0B3egyoRi8B
0fQM8JbeAPQAzOOuoT53CvncHXznjuDOXbCBnNOR3FKBHBJBrnhCTnay9xns
sSZ7yWHOZ8ztMnUOXZ7L+68AIJ/PKWAbvQd0p8eAavQSEE3P1PS3F/uhIrkE
9ADM466hPncK+dwdfOeO4M5dsIGc05HcUoEcEkGueEJOdrL3GeyxJnvJYc5n
zO0ydQ5dnsv7rwAgn88pYBu9B3Snx4Bq9BIQTc8Ab+kNQA/APO4a6nOnkM/d
wXfuCO7cBRvIOR3JLRXIIRHkiifkZCd7n8Eea7KXHOZ8xtwuU+fQ5bm8/woA
8vmcArbRe0B3egyoRi8B0fQM8JbeAPQAzOOuoT53CvncHXznjuDOXbCBnNOR
3FKBHBJBrnhCTnay9xnssSZ7yWHOZ8ztMnUOXZ7L+68AIJ/PKWAbvQd0p8eA
avQSEE3P7PS3d/vnhNwAegDmcddQnzuFfO4OvnNHcOcu2EDO6UhuqUAOiSBX
PCEnO9n7DPZYk73kMOcz5naZOocuz+X9VwCQz+cUsI3eA7rTY0A1egmIpmeA
t/QGoAdgHncN9blTyOfu4Dt3BHfugg3knI7klgrkkAhyxRNyspO9z2CPNdlL
DnM+Y26XqXPo8lzefwUA+XxOAdvoPaA7PQZUo5eAaHoGeEtvAHoA5nHXUJ87
hXzuDr5zR3DnLthAzulIbqlADokgVzwhJzvZ+wz2WJO95DDnM+Z2mTqHLs/l
/VcAkM/nFLCN3gO602NANXoJiKZniPCXK/mayV4BPQDzuGuoz51CPncH37kj
uHMXbCDndCS3VCCHRJArnpCTnex9BnusyV5ymPMZc7tMnUOX5/L+KwDI53MK
2EbvAd3pMaAavQRE0zPAW3oD0AMwT/Rdez8qfOd+IJ+7g+/cEdy5CzaQczqS
WyqQQyLIFU/IyU72PoM91mQvOcz5jLldps6hy3N5/xUA5PM5BWyj94Du9BhQ
jV4CoukZ4C29AegBmMddQ33uFPK5O/jOHcGdu2ADOacjuaUCOSSCXPGEnOxk
7zPYY032ksOcz5jbZeocujyX918BQD6fU8A2eg/oTo8B1eglIJqeoaO/3Mrv
v2HugB6Aedw11OdOIZ+7g+/cEdy5CzaQczqSWyqQQyLIFU/IyU72PoM91mQv
Ocz5jLldps6hy3N5/xUA5PM5BWyj94Du9BhQjV4CoukZ4C29AegBmMddQ33u
FPK5O/jOHcGdu2ADOacjuaUCOSSCXPGEnOxk7zPYY032ksOcz5jbZeocujyX
918BQD6fU8A2eg/oTo8B1eglIJqeAd7SG4AegHncNdTnTiGfu4Pv3BHcuQs2
kHM6klsqkEMiyBVPyMlO9j6DPdZkLznM+Yy5XabOoctzef8VAOTzOQVso/eA
7vQYUI1eAqLpGbj7uwv38V8zF0APwDzuGupzp5DP3cF37gju3AUbyDkdyS0V
yCER5Ion5GQne5/BHmuylxzmfMbcLlPn0OW5vP8KAPL5nAK20XtAd3oMqEYv
AdH0DPCW3gD0AMzjrqE+dwr53B18547gzl2wgZzTkdxSgRwSQa54Qk52svcZ
7LEme8lhzmfM7TJ1Dl2ey/uvACCfzylgG70HdKfHgGr0EhBNzwBv6Q1AD8A8
7hrqc6eQz93Bd+4I7twFG8g5HcktFcghEeSKJ+RkJ3ufwR5rspcc5nzG3C5T
59Dlubz/CgDy+ZwCttF7QHd6DKhGLwHR9Azk+7u7rvfX9e8N/PfRAzCPu4b6
3Cnkc3fwnTuCO3fBBnJOR3JLBXJIBLniCTnZyd5nsMea7CWHOZ8xt8vUOXR5
Lu+/AoB8PqeAbfQe0J0eA6rRS0A0PQO8pTcAPQDzuGuoz51CPncH37kjuHMX
bCDndCS3VCCHRJArnpCTnex9BnusyV5ymPMZc7tMnUOX5/L+KwDI53MK2Ebv
Ad3pMaAavQRE0zPAW3oD0AMwj7uG+twp5HN38J07gjt3wQZyTkdySwVySAS5
4gk52cneZ7DHmuwlhzmfMbfL1Dl0eS7vvwKAfD6ngG30HtCdHgOq0UtAND0D
8/zdddR96w1AD8A87hrqc6eQz93Bd+4I7twFG8g5HcktFcghEeSKJ+RkJ3uf
wR5rspcc5nzG3C5T59Dlubz/CgDy+ZwCttF7QHd6DKhGLwHR9Azwlt4A9ADM
466hPncK+dwdfOeO4M5dsIGc05HcUoEcEkGueEJOdrL3GeyxJnvJYc5nzO0y
dQ5dnsv7rwAgn88pYBu9B3Snx4Bq9BIQTc8Ab+kNQA/APO4a6nOnkM/dwXfu
CO7cBRvIOR3JLRXIIRHkiifkZCd7n8Eea7KXHOZ8xtwuU+fQ5bm8/woA8vmc
ArbRe0B3egyoRi8B0fQM8JbeAPQAzOOu/62/+dsDv8gH5HN38J07gjt3wQZy
TkdySwVySAS54gk52cneZ7DHmuwlhzmfMbfL1Dl0eS7vvwKAfD6ngG30HtCd
HgOq0UtAND0DvKU3AD0A87hrqM+dQj53B9+5I7hzF2wg53Qkt1Qgh0SQK56Q
k53sfQZ7rMlecpjzGXO7TJ1Dl+fy/isAyOdzCthG7wHd6TGgGr0ERNMzwFt6
A9ADMI+7hvrcKeRzd/CdO4I7d8EGck5HcksFckgEueIJOdnJ3mewx5rsJYc5
nzG3y9Q5dHku778CgHw+p4Bt9B7QnR4DqtFLQDQ9A7wV3Rt/f75+grrcJ8zj
rqE+dwr53B18547gzl2wgZzTkdxSgRwSQa54Qk52svcZ7LEme8lhzmfM7TJ1
Dl2ey/uvACCfzylgG70HdKfHgGr0EhBNzwBv6Q1AD8A87hrqc6eQz93Bd+4I
7twFG8g5HcktFcghEeSKJ+RkJ3ufwR5rspcc5nzG3C5T59Dlubz/CgDy+ZwC
ttF7QHd6DKhGLwHR9Azwlt4A9ADM466hPncK+dwdfOeO4M5dsIGc05HcUoEc
EkGueEJOdrL3GeyxJnvJYc5nzO0ydQ5dnsv7rwAgn88pYBu9B3Snx4Bq9BIQ
Tc8Ab3Xvjb+/f/fngH/J/cA87vrf8v2EJ+QD8rk7+M4dwZ27YAM5pyO5pQI5
JIJc8YSc7GTvM9hjTfaSw5zPmNtl6hy6PJf3XwFAPp9TwDZ6D+hOjwHV6CUg
mp4B3tIbgB6Aedw11OdOIZ+7g+/cEdy5CzaQczqSWyqQQyLIFU/IyU72PoM9
1mQvOcz5jLldps6hy3N5/xUA5PM5BWyj94Du9BhQjV4CoukZ4C29AegBmMdd
Q33uFPK5O/jOHcGdu2ADOacjuaUCOSSCXPGEnOxk7zPYY032ksOcz5jbZeoc
ujyX918BQD6fU8A2eg/oTo8B1eglIJqeAd7SG7/9zcecmEy+YR53DfW5U8jn
7uA7dwR37oIN5JyO5JYK5JAIcsUTcrKTvc9gjzXZSw5zPmNul6lz6PJc3n8F
APl8TgHb6D2gOz0GVKOXgGh6BnhLbwB6AOZx11CfO4V87g6+c0dw5y7YQM7p
SG6pQA6JIFc8ISc72fsM9liTveQw5zPmdpk6hy7P5f1XAJDP5xSwjd4DutNj
QDV6CYimZ4C39AagB2Aedw31uVPI5+7gO3cEd+6CDeScjuSWCuSQCHLFE3Ky
k73PYI812UsOcz5jbpepc+jyXN5/BQD5fE4B2+g9oDs9BlSjl4BoegZ4S2/8
W3/ztwf+JfmDedw11OdOIZ+7g+/cEdy5CzaQczqSWyqQQyLIFU/IyU72PoM9
1mQvOcz5jLldps6hy3N5/xUA5PM5BWyj94Du9BhQjV4CoukZ4C29AegBmMdd
Q33uFPK5O/jOHcGdu2ADOacjuaUCOSSCXPGEnOxk7zPYY032ksOcz5jbZeoc
ujyX918BQD6fU8A2eg/oTo8B1eglIJqeAd7SG4AegHncNdTnTiGfu4Pv3BHc
uQs2kHM6klsqkEMiyBVPyMlO9j6DPdZkLznM+Yy5XabOoctzef8VAOTzOQVs
o/eA7vQYUI1eAqLpGeAtvTHb337tmV/kA+Zx11CfO4V87g6+c0dw5y7YQM7p
SG6pQA6JIFc8ISc72fsM9liTveQw5zPmdpk6hy7P5f1XAJDP5xSwjd4DutNj
QDV6CYimZ4C39AagB2Aedw31uVPI5+7gO3cEd+6CDeScjuSWCuSQCHLFE3Ky
k73PYI812UsOcz5jbpepc+jyXN5/BQD5fE4B2+g9oDs9BlSjl4BoegZ4S28A
egDmcddQnzuFfO4OvnNHcOcu2EDO6UhuqUAOiSBXPCEnO9n7DPZYk73kMOcz
5naZOocuz+X9VwCQz+cUsI3eA7rTY0A1egmIpmeAt/QGX/zlR456sz+Yx11D
fe4U8rk7+M4dwZ27YAM5pyO5pQI5JIJc8YSc7GTvM9hjTfaSw5zPmNtl6hy6
PJf3XwFAPp9TwDZ6D+hOjwHV6CUgmp4B3tIbgB6Aedw11OdOIZ+7g+/cEdy5
CzaQczqSWyqQQyLIFU/IyU72PoM91mQvOcz5jLldps6hy3N5/xUA5PM5BWyj
94Du9BhQjV4CoukZ4C29AegBmMddQ33uFPK5O/jOHcGdu2ADOacjuaUCOSSC
XPGEnOxk7zPYY032ksOcz5jbZeocujyX918BQD6fU8A2eg/oTo8B1eglIJqe
Ad7SG1T2l085jWW+ME/3u9b/fNElP//p309W//tDR+4KvnNHcOcu2EDO6Uhu
qUAOiSBXPCEnO9n7DPZYk73kMOcz5naZOocuz+X9VwCQz+cUsI3eA7rTY0A1
egmIpmeAt/QGoAdgHncN9blTyOfu4Dt3BHfugg3knI7klgrkkAhyxRNyspO9
z2CPNdlLDnM+Y26XqXPo8lzefwUA+XxOAdvoPaA7PQZUo5eAaHoGeEtvAHoA
5nHXUJ87hXzuDr5zR3DnLthAzulIbqlADokgVzwhJzvZ+wz2WJO95DDnM+Z2
mTqHLs/l/VcAkM/nFLCN3gO602NANXoJiKZngLf0Bpv95X/7HWx/fpjIXUN9
7hTyuTv4zh3BnbtgAzmnI7mlAjkkglzxhJzsZO8z2GNN9pLDnM+Y22XqHLo8
l/dfAUA+n1PANnoP6E6PAdXoJSCangHe0huAHoB53DXU504hn7uD79wR3LkL
NpBzOpJbKpBDIsgVT8jJTvY+gz3WZC85zPmMuV2mzqHLc3n/FQDk8zkFbKP3
gO70GFCNXgKi6RngLb0B6AGYx11Dfe4U8rk7+M4dwZ27YAM5pyO5pQI5JIJc
8YSc7GTvM9hjTfaSw5zPmNtl6hy6PJf3XwFAPp9TwDZ6D+hOjwHV6CUgmp4B
3tIbEOfvvqrfWfW/H/Ceu4b63Cnkc3fwnTuCO3fBBnJOR3JLBXJIBLniCTnZ
yd5nsMea7CWHOZ8xt8vUOXR5Lu+/AoB8PqeAbfQe0J0eA6rRS0A0PQO8pTcA
PQDzuGuoz51CPncH37kjuHMXbCDndCS3VCCHRJArnpCTnex9BnusyV5ymPMZ
c7tMnUOX5/L+KwDI53MK2EbvAd3pMaAavQRE0zPAW3oD0AMwj7uG+twp5HN3
8J07gjt3wQZyTkdySwVySAS54gk52cneZ7DHmuwlhzmfMbfL1Dl0eS7vvwKA
fD6ngG30HtCdHgOq0UtAND0DvKU3oK+/+/16x3oA5nHXUJ87hXzuDr5zR3Dn
LthAzulIbqlADokgVzwhJzvZ+wz2WJO95DDnM+Z2mTqHLs/l/VcAkM/nFLCN
3gO602NANXoJiKZngLf0BqAHYB53DfW5U8jn7uA7dwR37oIN5JyO5JYK5JAI
csUTcrKTvc9gjzXZSw5zPmNul6lz6PJc3n8FAPl8TgHb6D2gOz0GVKOXgGh6
BnhLbwB6AOZx11CfO4V87g6+c0dw5y7YQM7pSG6pQA6JIFc8ISc72fsM9liT
veQw5zPmdpk6hy7P5f1XAJDP5xSwjd4DutNjQDV6CYimZ4C39Abwn/79hp6A
ftwt1OdOIZ+7g+/cEdy5CzaQczqSWyqQQyLIFU/IyU72PoM91mQvOcz5jLld
ps6hy3N5/xUAABDN93OgOz0GVKOXgGh6BnhLbwB6AOZx11CfO4V87g6+c0dw
5y7YQM7pSG6pQA6JIFc8ISc72fsM9liTveQw5zPmdpk6hy7P5f1XAABANN/P
ge70GFCNXgKi6RngLb0B6AGYx11Dfe4U8rk7+M4dwZ27YAM5pyO5pQI5JIJc
8YSc7GTvM9hjTfaSw5zPmNtl6hy6PJf3XwEAANF8Pwe602NANXoJiKZngLf0
BvCv//2JHoL/fu4K6pt6pz7fqUwu4Tt3BHfugg3knI7klgrkkAhyxRNyspO9
z2CPNdlLDnM+Y26XqXPo8lz/+t8fRv05XeYPAAAb+H4OdKfHgGr0EhBNzwBv
6Q1AD8A87hrqc6eQz93Bd+4I7twFG8g5HcktFcghEeSKJ+RkJ3ufwR5rspcc
5nzG3C5T59Dlubz/CgAAiOb7OdCdHgOq0UtAND0DvKU3AD0A87hrqM+dQj53
B9+5I7hzF2wg53Qkt1Qgh0SQK56Qk53sfQZ7rMlecpjzGXO7TJ1Dl+fy/isA
ACCa7+dAd3oMqEYvAdH0DPCW3gCm9sDfc019PvhF7qE+dwr53B18547gzl2w
gZzTkdxSgRwSQa54Qk52svcZ7LEme8lhzmfM7TJ1Dl2ey/uvAACAaL6fA93p
MaAavQRE0zPAW3oD0AMwj7uG+twp5HN38J07gjt3wQZyTkdySwVySAS54gk5
2cneZ7DHmuwlhzmfMbfL1Dl0eS7vvwIAAKL5fg50p8eAavQSEE3PAG/pDUAP
wDzuGupzp5DP3cF37gju3AUbyDkdyS0VyCER5Ion5GQne5/BHmuylxzmfMbc
LlPn0OW5vP8KAACI5vs50J0eA6rRS0A0PQO8pTcAPXDmb27mR0VyCfW5U8jn
7uA7dwR37oIN5JyO5JYK5JAIcsUTcrKTvc9gjzXZSw5zPmNul6lz6PJc3n8F
AABE8/0c6E6PAdXoJSCangHe0huAHoB53DXU504hn7uD79wR3LkLNpBzOpJb
KpBDIsgVT8jJTvY+gz3WZC85zPmMuV2mzqHLc3n/FQAAEM33c6A7PQZUo5eA
aHoGeEtvAHoA5nHXUJ87hXzuDr5zR3DnLthAzulIbqlADokgVzwhJzvZ+wz2
WJO95DDnM+Z2mTqHLs/l/VcAAEA038+B7vQYUI1eAqLpGeAtvQHogZr+9mI/
nJAbqM+dQj53B9+5I7hzF2wg53Qkt1Qgh0SQK56Qk53sfQZ7rMlecpjzGXO7
TJ1Dl+fy/isAACCa7+dAd3oMqEYvAdH0DPCW3gD0AMzjrqE+dwr53B18547g
zl2wgZzTkdxSgRwSQa54Qk52svcZ7LEme8lhzmfM7TJ1Dl2ey/uvAACAaL6f
A93pMaAavQRE0zPAW3oD0AMwj7uG+twp5HN38J07gjt3wQZyTkdySwVySAS5
4gk52cneZ7DHmuwlhzmfMbfL1Dl0eS7vvwIAAKL5fg50p8eAavQSEE3PAG/p
DUAP7PS3d/ufyV6hPncK+dwdfOeO4M5dsIGc05HcUoEcEkGueEJOdrL3Geyx
JnvJYc5nzO0ydQ5dnsv7rwAAgGi+nwPd6TGgGr0ERNMzwFt6A9ADMI+7hvrc
KeRzd/CdO4I7d8EGck5HcksFckgEueIJOdnJ3mewx5rsJYc5nzG3y9Q5dHku
778CAACi+X4OdKfHgGr0EhBNzwBv6Q1AD8A87hrqc6eQz93Bd+4I7twFG8g5
HcktFcghEeSKJ+RkJ3ufwR5rspcc5nzG3C5T59Dlubz/CgAAiOb7OdCdHgOq
0UtAND0DvKU3AD1AhL9cyde/Ye5Qnzslgs/f38wFvnNHcOcu2EDO6UhuqUAO
iSBXPCEnO9n7DPZYk73kMOcz5naZOocuz+X9VwAAQDTfz4Hu9BhQjV4CoukZ
4C29AegBmMddQ33uFPK5O/jOHcGdu2ADOacjuaUCOSSCXPGEnOxk7zPYY032
ksOcz5jbZeocujyX918BAADRfD8HutNjQDV6CYimZ4C39AagB2Aedw31uVPI
5+7gO3cEd+6CDeScjuSWCuSQCHLFE3Kyk73PYI812UsOcz5jbpepc+jyXN5/
BQAARPP9HOhOjwHV6CUgmp4B3tIbgB6go7/cyu9/zVygPncK+dwdfOeO4M5d
sIGc05HcUoEcEkGueEJOdrL3GeyxJnvJYc5nzO0ydQ5dnsv7rwAAgGi+nwPd
6TGgGr0ERNMzwFt6A9ADMI+7hvrcKeRzd/CdO4I7d8EGck5HcksFckgEueIJ
OdnJ3mewx5rsJYc5nzG3y9Q5dHku778CAACi+X4OdKfHgGr0EhBNzwBv6Q1A
D8A87hrqc6eQz93Bd+4I7twFG8g5HcktFcghEeSKJ+RkJ3ufwR5rspcc5nzG
3C5T59Dlubz/CgAAiOb7OdCdHgOq0UtAND0DvKU3AD0Ad3930fU+uv69YRN3
CvncHXznjuDOXbCBnNOR3FKBHBJBrnhCTnay9xnssSZ7yWHOZ8ztMnUOXZ7L
+68AAIBovp8D3ekxoBq9BETTM8BbegPQAzCPu4b63Cnkc3fwnTuCO3fBBnJO
R3JLBXJIBLniCTnZyd5nsMea7CWHOZ8xt8vUOXR5Lu+/AgAAovl+DnSnx4Bq
9BIQTc8Ab+kNQA/APO4a6nOnkM/dwXfuCO7cBRvIOR3JLRXIIRHkiifkZCd7
n8Eea7KXHOZ8xtwuU+fQ5bm8/woAAIjm+znQnR4DqtFLQDQ9A7ylNwA9APn+
7i7q/tw11OdOIZ+7g+/cEdy5CzaQczqSWyqQQyLIFU/IyU72PoM91mQvOcz5