forked from deepmedic/deepmedic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotTrainingProgress.py
620 lines (495 loc) · 37.9 KB
/
plotTrainingProgress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# Copyright (c) 2016, Konstantinos Kamnitsas
# All rights reserved.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the BSD license. See the accompanying LICENSE file
# or read the terms at https://opensource.org/licenses/BSD-3-Clause.
'''
This script parses training logs and plots accuracy metrics (mean accuracy, sensitivity, specificity, DSC over samples and DSC of full segmentation of validation subjects).
Last update: 16 June 2016
'''
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import os
import sys
import argparse
import re
NA_PATTERN = "N/A"
SESSION_NAME_PATTERN = "Session\'s name ="
SUBEPS_PER_EP_PATTERN = "Number of Subepochs per epoch ="
NUM_EPS_BETWEEN_FULLINF_PATTERN = "Perform Full-Inference on Val. cases every that many epochs ="
NUM_OF_CLASSES_PATTERN = "Number of Classes (incl. background) (from cnnModel) ="
# Patterns for extracting detailed metrics:
VALIDATION_PATT = "VALIDATION:"
TRAINING_PATT = "TRAINING:"
CLASS_PREFIX_PATT = "Class-"
MEANACC_SENTENCE = "mean accuracy of each subepoch:"
SENS_SENTENCE = "mean sensitivity of each subepoch:"
SPEC_SENTENCE = "mean specificity of each subepoch:"
DSC_SAMPLES_SENTENCE = "mean Dice of each subepoch:"
# Patterns for extracting basic metrics
OVERALLCLASS_PATT = "Overall"
MEANACC_OVERALL_SENTENCE = "mean accuracy of each subepoch:"
COST_OVERALL_SENTENCE = "mean cost of each subepoch:"
def setupArgParser() :
parser = argparse.ArgumentParser( prog='plotTrainingProgress', formatter_class=argparse.RawTextHelpFormatter,
description='''This script parses training logs and plots accuracy metrics (mean accuracy, sensitivity, specificity, DSC over samples, DSC of full segmentation of validation subjects).''')
parser.add_argument("log_files", nargs='+', type=str, help="Paths to training logs. More than one log can be given, to plot progress of multiple experiments. \nFormat: python ./plotTrainingProgress.py log1.txt log2.txt logs3.txt ...")
parser.add_argument("-d", "--detailed", dest='detailed_plot', action='store_true', help="By default, only \"overall\" mean empirical accuracy is plotted. Provide this option for a more detailed and \"class-specific\" plot.\nMetrics plotted: mean accuracy, sensitivity, specificity, DSC on samples and DSC on fully-segmented validation subjects.\n***IMPORTANT***\n\"Class-specific\" metrics of the more detailed plot are computed in a \"One-Class Vs All-Others\" fashion!\nIn *Multi-Class* problems, \"overall\" accuracy of the basic plot and \"class-specific\" accuracy of the detailed plot differ significantly because of this!\nOverall accuracy of basic plot: Number of voxels predicted with correct class / number of all voxels.\nClass-specific accuracy of detailed plot: (True Positives + True Negatives with respect to \"the specified class\") / number of all voxels.\n\t>> i.e. voxels predicted with any other class are all considered similar, eg as background.")
parser.add_argument("-c", "--classes", dest='classes_to_plot', nargs='+', type=int, help="Use only when --detailed plot is activated.\nSpecify for which class(es) to plot metrics.\nFormat: -c 2 |OR| -c 0 0 2 ... (Default: class-0 will be plotted from each log.) \n*NOTE* Plotted metrics for Class-0 correspond to \"whole\" Foreground, although Label-0 in the NIFTIs is supposed to be Background. We consider it more useful.\nUsage cases:\nA single class specified: All given log files will be parsed to plot corresponding training progress for this class. \nMultiple classes and one log file: Log will be parsed for all given classes in order to plot their progress. \nMultiple classes and multiple logs: They will be matched one-to-one for plotting. For this, same number of classes and logs should be given.")
parser.add_argument("-m", "--movingAv", dest='moving_average', type=int, default=1, help="Plotted values are smoothed with a moving average. Specify over how many values (subepochs) it should extend. \nFormat: -m 20 (Default: 1)\n*NOTE* DSC from full-segmentation of validation images is not smoothed.")
parser.add_argument("-s", "--saveFigure", dest='save_figure', action='store_true', help="Use to make the script save the figure at the current folder. Takes no arguments.")
return parser
def getNameOfLogFileWithoutEnding(filePathToLog):
filenameOfLog = os.path.basename(filePathToLog)
(filenameWithoutExt, extension1) = os.path.splitext(filenameOfLog)
return filenameWithoutExt
def getSubepochsPerEpoch(pathToLog) :
lineWithPattern = getFirstLineInLogWithCertainPattern(pathToLog, SUBEPS_PER_EP_PATTERN)
if lineWithPattern == None : return None
return getIntFromStr( lineWithPattern[ lineWithPattern.find(SUBEPS_PER_EP_PATTERN) + len(SUBEPS_PER_EP_PATTERN) : ] )
def getEpochsBetweenFullInf(pathToLog) :
lineWithPattern = getFirstLineInLogWithCertainPattern(pathToLog, NUM_EPS_BETWEEN_FULLINF_PATTERN)
if lineWithPattern == None : return None
return getIntFromStr( lineWithPattern[ lineWithPattern.find(NUM_EPS_BETWEEN_FULLINF_PATTERN) + len(NUM_EPS_BETWEEN_FULLINF_PATTERN) : ] )
def getNumberOfClasses(pathToLog) :
lineWithPattern = getFirstLineInLogWithCertainPattern(pathToLog, NUM_OF_CLASSES_PATTERN)
if lineWithPattern == None : return None
return getIntFromStr( lineWithPattern[ lineWithPattern.find(NUM_OF_CLASSES_PATTERN) + len(NUM_OF_CLASSES_PATTERN) : ] )
def getIntFromStr(string1) : #may be unstripped
return int(string1.strip())
def getFloatFromStr(string1) : #may be unstripped
return float(string1.strip())
def parseLogFileAndGetVariablesOfInterest(pathToLog) :
experimentName = None; subepochsPerEpoch=None; epochsBetweenEachFullInfer=None
experimentName = getNameOfLogFileWithoutEnding(pathToLog)
subepochsPerEpoch = getSubepochsPerEpoch(pathToLog)
epochsBetweenEachFullInfer = getEpochsBetweenFullInf(pathToLog)
return (experimentName, subepochsPerEpoch, epochsBetweenEachFullInfer)
def parseVariablesOfTrainingSessionsFromListOfLogs(inLogsList) :
listOfExperimentsNames = []; listOfSubepochsPerEpFromEachLog = []; listOfEpochsPerFullInferFromEachLog = []
for log_i in xrange(len(inLogsList)) :
#Get variables from the logfile.
(experimentName, subepochsPerEpoch, epochsBetweenEachFullInfer) = parseLogFileAndGetVariablesOfInterest(inLogsList[log_i])
#In case the name was not found:
if not experimentName : experimentName = "TrainingSession-" + str(log_i)
if not subepochsPerEpoch : subepochsPerEpoch = 20 #default
if not epochsBetweenEachFullInfer : epochsBetweenEachFullInfer = 1 #default
listOfExperimentsNames.append(experimentName)
listOfSubepochsPerEpFromEachLog.append(subepochsPerEpoch)
listOfEpochsPerFullInferFromEachLog.append(epochsBetweenEachFullInfer)
return (listOfExperimentsNames, listOfSubepochsPerEpFromEachLog, listOfEpochsPerFullInferFromEachLog)
def makeLegendList(listOfExperimentsNames, classesFromEachLogFile) :
legendList = []
for exper_i in xrange(len(listOfExperimentsNames)) :
for classFromExper in classesFromEachLogFile[exper_i] :
legendList.append( listOfExperimentsNames[exper_i] + "-Class" + str(classFromExper) )
return legendList
def makeHelperVariablesPerExperiment(logFiles, classesFromEachLogFile, subepochsPerEpFromEachLog, epochsPerFullInferFromEachLog) :
subepochsPerEpOfExpers = []
epochsPerFullInferOfExpers = []
for logFile_i in xrange(len(logFiles)) :
for classForLogFile_i in xrange(len(classesFromEachLogFile[logFile_i])) :
subepochsPerEpOfExpers.append(subepochsPerEpFromEachLog[logFile_i]) # Essentially just doublicating the same entry again and again for all classes of same logfile/experiment.
epochsPerFullInferOfExpers.append(epochsPerFullInferFromEachLog[logFile_i])
return (subepochsPerEpOfExpers, epochsPerFullInferOfExpers)
def getStringOfTheListThatForSureStartsInThisLineButMayEndInAnother(restOfTheLineAfterTheEndOfTheWantedPattern, f) :
#A list starts in the currently already-read line = restOfTheLineAfterTheEndOfTheWantedPattern. But it may be ending ] in this same line, or one of the next ones.
#If it does not end in this one, keep reading lilnes from file f, until you find its end. Put the whole list, including [] into the returned resulting string.
#The file will be read UP UNTIL the line where the list ] ends. This may be the already read line (ie, dont read any more).
indexWhereListStartsInThisLine = restOfTheLineAfterTheEndOfTheWantedPattern.find("[")
indexWhereListEndsInThisLine = restOfTheLineAfterTheEndOfTheWantedPattern.find("]")
if indexWhereListEndsInThisLine > -1 :
theListInString = restOfTheLineAfterTheEndOfTheWantedPattern[ indexWhereListStartsInThisLine : indexWhereListEndsInThisLine+1 ]
endOfListFound = True
else :
theListInString = restOfTheLineAfterTheEndOfTheWantedPattern[ indexWhereListStartsInThisLine : ]
endOfListFound = False
while endOfListFound == False :
newLine = f.readline()
if newLine :
indexWhereListEndsInThisLine = newLine.find("]")
if indexWhereListEndsInThisLine > -1 :
theListInString += newLine[ : indexWhereListEndsInThisLine+1 ]
endOfListFound = True
else :
theListInString += newLine[ : ]
theListInString = theListInString.strip() #to get trailing whitespace off.
return theListInString
def getAListOfStringNumbersAfterSplittingThemFromAStringListWithStringNumbers(theListInString, splittingChar) :
#gets a string that is a STRING LIST with inside STRING-NUMBERS. It returns an actual list, where the elements are the string-numbers.
numbersOfListInString = theListInString.strip()
numbersOfListInString = numbersOfListInString.lstrip('[')
numbersOfListInString = numbersOfListInString.rstrip(']')
#print "numbersOfListInString=",numbersOfListInString
#parse the numbers and put them in a list to return.
if splittingChar=="" :
listOfstringNumbersSplitted = numbersOfListInString.split()
else :
listOfstringNumbersSplitted = numbersOfListInString.split(splittingChar)
return listOfstringNumbersSplitted
def getFirstLineInLogWithCertainPattern(filePathToLog, pattern) :
foundLine = None
f = open(filePathToLog, 'r')
newLine = f.readline()
while newLine :
if newLine.find(pattern) > -1 :
foundLine = newLine
break
newLine = f.readline()
f.close()
return foundLine # Returns None if not found.
def getRegExprForParsingMetric(validation0orTraining1, basic0detailed1, class_i, intSpecifyingMetric01234) :
validationOrTrainingString = VALIDATION_PATT if validation0orTraining1 == 0 else TRAINING_PATT
if basic0detailed1 == 0 : # basic plotting
classPrefixString = OVERALLCLASS_PATT
if intSpecifyingMetric01234 == 0 : #looking for mean accuracy
sentenceToLookFor = MEANACC_OVERALL_SENTENCE
elif intSpecifyingMetric01234 == 1 : #looking for cost
sentenceToLookFor = COST_OVERALL_SENTENCE
else : #detailed plotting
classPrefixString = CLASS_PREFIX_PATT + str(class_i)
if intSpecifyingMetric01234 == 0 : #looking for mean accuracy
sentenceToLookFor = MEANACC_SENTENCE
elif intSpecifyingMetric01234 == 1 : #looking for pos accuracy
sentenceToLookFor = SENS_SENTENCE
elif intSpecifyingMetric01234 == 2 : #looking for neg accuracy
sentenceToLookFor = SPEC_SENTENCE
elif intSpecifyingMetric01234 == 3 : #looking for dice on samples
sentenceToLookFor = DSC_SAMPLES_SENTENCE
regExp1 = ".*" + validationOrTrainingString + ".*" + classPrefixString + ".*" + sentenceToLookFor
return (regExp1, sentenceToLookFor)
def getListOfAccNumbersFromListOfStrNumbersAvoidingNotAppl(listOfstringNumbers, previousValueOfTheVariableInTheTimeSerie) :
listOfAccNumbers = []
for stringNumber in listOfstringNumbers :
stringNumberStrippedOfWhiteSpace = stringNumber.strip()
parseFloatNumber = float(stringNumberStrippedOfWhiteSpace) if stringNumberStrippedOfWhiteSpace <> NA_PATTERN else previousValueOfTheVariableInTheTimeSerie
previousValueOfTheVariableInTheTimeSerie = parseFloatNumber
listOfAccNumbers.append(parseFloatNumber)
return listOfAccNumbers
def movingAverage(a, n=1) :
cumsum = np.cumsum(a, dtype=float)
tempRetComplete = cumsum[n:] - cumsum[:-n]
retCompletePart = tempRetComplete / n
# Also calculate the rollAverage for the first n-1 elements, even if it's calculated with less than n elements
retIncompletePart = cumsum[:n]
for i in range(0, len(retIncompletePart)) :
retIncompletePart[i] = retIncompletePart[i] / (i+1)
return np.concatenate((retIncompletePart, retCompletePart), axis = 0)
def movingAverageConv(a, window_size=1) :
if not a : return a
window = np.ones(int(window_size))
result = np.convolve(a, window, 'full')[ : len(a)] # Convolve full returns array of shape ( M + N - 1 ).
slotsWithIncompleteConvolution = min(len(a), window_size-1)
result[slotsWithIncompleteConvolution:] = result[slotsWithIncompleteConvolution:]/float(window_size)
if slotsWithIncompleteConvolution > 1 :
divisorArr = np.asarray(range(1, slotsWithIncompleteConvolution+1, 1), dtype=float)
result[ : slotsWithIncompleteConvolution] = result[ : slotsWithIncompleteConvolution] / divisorArr
return result
################################# PARSING the reported measurements from logs (Optimized for one pass per log) #####################################
# There will be ugly code in here.
def applyMovingAverageToAllButDscFullSeg(detailedPlotBool, measuredMetricsFromAllExperiments, movingAverSubeps ) :
for valOrTrainExperiments in measuredMetricsFromAllExperiments :
for experimentToPlot in valOrTrainExperiments : # Number of logs X Classes
for metric_i in xrange(len(experimentToPlot)) :
if detailedPlotBool and metric_i == 4 : # We are plotting detailed metrics and this is the DSC-Full-Seg, which we do not smooth with movingAverage
continue
experimentToPlot[metric_i] = movingAverageConv(experimentToPlot[metric_i], movingAverSubeps)
return measuredMetricsFromAllExperiments
def checkIfLineMatchesAnyRegExpr(string, regExprForEachClassAndMetric) :
for val0orTrain1 in xrange(len(regExprForEachClassAndMetric)) : #[0,1]
for class_i in xrange(len(regExprForEachClassAndMetric[val0orTrain1])) :
for metric_i in xrange(len(regExprForEachClassAndMetric[val0orTrain1][class_i])) :
regExp1 = regExprForEachClassAndMetric[val0orTrain1][class_i][metric_i]
matchObj = re.match( regExp1, string, re.M|re.I)
if matchObj :
return matchObj, val0orTrain1, class_i, metric_i
return None, None, None, None # No regular expression matches this string.
# THE DATA STRUCTURES HERE are very ugly, with one extra useless dimension, to be consistent with the "detailed" version. For future merging. See parseDetailedMetricsFromThisLog, which was written first!
def parseBasicMetricsFromThisLog( logFile, movingAverSubeps ) :
### Initially just form a data structure with the regular expressions for each val/train, class and metric. ###
# [0] val, [1] train
# Each has one sublist, because I only have 1 class in the basic-plotting! ( Extra dimension kept just so that this function is consistent with the "detailed" version. For future merging.)
# Each class-sublist has 1 entry, one for Acc
regExprForEachClassAndMetric = [ [ [] ], [ [] ] ] #[0] val, [1] train
sentencesToLookForEachClassAndMetric = [ [ [] ], [ [] ] ] #[0] val, [1] train
for val0orTrain1 in [0,1] :
(regExprForMeanAcc, sentenceForMeanAcc) = getRegExprForParsingMetric(val0orTrain1, 0, None, 0)
regExprForEachClassAndMetric[val0orTrain1][0].append( regExprForMeanAcc )
sentencesToLookForEachClassAndMetric[val0orTrain1][0].append( sentenceForMeanAcc )
### Form the data structure where we ll put all the measurements from this logfile for each val/train, class and metric. ###
#[0] val, [1] train. Each has one sublist, because in basic I have only 1 class to be plotted. The class-sublist has 1 sublist, because here I have only 1 plotted metric.
measurementsForEachClassAndMetric = [ [ [] ], [ [] ] ]
previousMeasurementForEachClassAndMetric = [ [ [] ], [ [] ] ] #This is useful in the case I get a not-valid number, to just use the previous one.
for val0orTrain1 in [0,1] :
for metric_i in xrange(1) :
measurementsForEachClassAndMetric[val0orTrain1][0].append([]) # Add a sublist in the class, per metric.
previousMeasurementForEachClassAndMetric[val0orTrain1][0].append(0)
### Read the file and start parsing each line.
f = open(logFile, 'r')
newLine = f.readline()
while newLine :
matchObj, matchVal0Train1, matchClass_i, matchMetric_i = checkIfLineMatchesAnyRegExpr(newLine, regExprForEachClassAndMetric)
if matchObj : #matched the reg-expression for Acc
sentenceToLookFor = sentencesToLookForEachClassAndMetric[matchVal0Train1][matchClass_i][matchMetric_i]
restOfLineAfterPattern = newLine[ newLine.find(sentenceToLookFor)+len(sentenceToLookFor) : ]
theListInString = getStringOfTheListThatForSureStartsInThisLineButMayEndInAnother(restOfLineAfterPattern, f)
listOfstringNumbersSplitted = getAListOfStringNumbersAfterSplittingThemFromAStringListWithStringNumbers(theListInString, "")
previousMeasurementForClassAndMetric = previousMeasurementForEachClassAndMetric[matchVal0Train1][matchClass_i][matchMetric_i]
listOfMeasurements = getListOfAccNumbersFromListOfStrNumbersAvoidingNotAppl(listOfstringNumbersSplitted, previousMeasurementForClassAndMetric)
previousMeasurementForEachClassAndMetric[matchVal0Train1][matchClass_i][matchMetric_i] = listOfMeasurements[-1] # LHS use the list itself, not an intermediate immutable int-variable!
measurementsForEachClassAndMetric[matchVal0Train1][matchClass_i][matchMetric_i] += listOfMeasurements
newLine = f.readline()
f.close()
return ( measurementsForEachClassAndMetric[0], measurementsForEachClassAndMetric[1] )
# THIS IS A VERY UGLY FUNCTION because it has hardcoded 0/4/5 integers for each of the metric. I need to make an enumerated class for this!
def parseDetailedMetricsFromThisLog( logFile, classesFromThisLog, movingAverSubeps ) :
### Initially just form a data structure with the regular expressions for each val/train, class and metric. ###
# [0] val, [1] train
# Each has one sublist per class to be plotted
# Each class-sublist has 4 entries, one for each of the plotted metrics Acc,Sens,Spec,DSC-samples. NOT FOR DSC-Full-Seg cause it's not reported per class/subepoch.
regExprForEachClassAndMetric = [ [], [] ] #[0] val, [1] train
sentencesToLookForEachClassAndMetric = [ [], [] ] #[0] val, [1] train
regExprForDscFullSeg = ".*ACCURACY:.*Validation.*The Per-Class average DICE Coefficients over all subjects are:.*DICE3=" # Special case, because it's not reported per class.
sentenceForDscFullSeg = "DICE3="
for val0orTrain1 in [0,1] :
for classInt in classesFromThisLog :
# mean acc, sens, spec, dsc samples, dsc full.
regExprForClassAllMetrics = [0,0,0,0]
sentencesForClassAllMetrics = [0,0,0,0]
for metric_i in xrange(len(regExprForClassAllMetrics)) :
(regExprForClassAllMetrics[metric_i], sentencesForClassAllMetrics[metric_i]) = getRegExprForParsingMetric(val0orTrain1, 1, classInt, metric_i)
regExprForEachClassAndMetric[val0orTrain1].append( regExprForClassAllMetrics )
sentencesToLookForEachClassAndMetric[val0orTrain1].append( sentencesForClassAllMetrics )
### Form the data structure where we ll put all the measurements from this logfile for each val/train, class and metric. ###
#[0] val, [1] train. Each has one sublist per class to be plotted. Each class-sublist has 5 sublists, one for each of the plotted metrics.
measurementsForEachClassAndMetric = [ [], [] ]
previousMeasurementForEachClassAndMetric = [ [], [] ] #This is useful in the case I get a not-valid number, to just use the previous one.
for val0orTrain1 in [0,1] :
for class_i in xrange(len(classesFromThisLog)) :
measurementsForEachClassAndMetric[val0orTrain1].append([]) # add a sublist in the val/train for each class
previousMeasurementForEachClassAndMetric[val0orTrain1].append([])
for metric_i in xrange(0,5) : # CAREFUL WITH THIS >> 5 <<
measurementsForEachClassAndMetric[val0orTrain1][class_i].append([]) # Add a sublist in the class, per metric.
if metric_i == 4 : # If it's the DSC-full-segm, add an initial 0 measurement!
measurementsForEachClassAndMetric[val0orTrain1][class_i][-1].append(0)
previousMeasurementForEachClassAndMetric[val0orTrain1][class_i].append(0)
### Read the file and start parsing each line.
f = open(logFile, 'r')
newLine = f.readline()
while newLine :
matchObj, matchVal0Train1, matchClass_i, matchMetric_i = checkIfLineMatchesAnyRegExpr(newLine, regExprForEachClassAndMetric)
if matchObj : #matched one of the reg-expressions for Acc/Sens/Spec/Dsc-Samples.
sentenceToLookFor = sentencesToLookForEachClassAndMetric[matchVal0Train1][matchClass_i][matchMetric_i]
restOfLineAfterPattern = newLine[ newLine.find(sentenceToLookFor)+len(sentenceToLookFor) : ]
theListInString = getStringOfTheListThatForSureStartsInThisLineButMayEndInAnother(restOfLineAfterPattern, f)
listOfstringNumbersSplitted = getAListOfStringNumbersAfterSplittingThemFromAStringListWithStringNumbers(theListInString, "")
previousMeasurementForClassAndMetric = previousMeasurementForEachClassAndMetric[matchVal0Train1][matchClass_i][matchMetric_i]
listOfMeasurements = getListOfAccNumbersFromListOfStrNumbersAvoidingNotAppl(listOfstringNumbersSplitted, previousMeasurementForClassAndMetric)
previousMeasurementForEachClassAndMetric[matchVal0Train1][matchClass_i][matchMetric_i] = listOfMeasurements[-1] # LHS use the list itself, not an intermediate immutable int-variable!
measurementsForEachClassAndMetric[matchVal0Train1][matchClass_i][matchMetric_i] += listOfMeasurements
elif re.match( regExprForDscFullSeg, newLine, re.M|re.I) : # Did not match the reg-expressions for Acc/Sens/Spec/Dsc-Samples. But matches DSC-Full-Inf!
sentenceToLookFor = sentenceForDscFullSeg
restOfLineAfterPattern = newLine[ newLine.find(sentenceToLookFor)+len(sentenceToLookFor) : ]
theListInString = getStringOfTheListThatForSureStartsInThisLineButMayEndInAnother(restOfLineAfterPattern, f)
listOfstringNumbersSplitted = getAListOfStringNumbersAfterSplittingThemFromAStringListWithStringNumbers(theListInString, "")
for class_i in xrange(len(classesFromThisLog)) :
previousMeasurement = previousMeasurementForEachClassAndMetric[0][class_i][4] # get last value found for DSC of this class.
dscForTheWantedClassInString = listOfstringNumbersSplitted[ classesFromThisLog[class_i] ] # Reported list with DICE is different than others and has a float per class.
# listOfMeasurements = [float], just a list with one float in this case of DSC-full-seg.
listOfMeasurements = getListOfAccNumbersFromListOfStrNumbersAvoidingNotAppl( [dscForTheWantedClassInString], previousMeasurement) # just returns the str number as float here.
previousMeasurementForEachClassAndMetric[0][class_i][4] = listOfMeasurements[-1] # DONT replace LHS with any intermediate Int immutable variable!
measurementsForEachClassAndMetric[0][class_i][4] += listOfMeasurements
newLine = f.readline()
f.close()
return ( measurementsForEachClassAndMetric[0], measurementsForEachClassAndMetric[1] )
def optimizedParseMetricsFromLogs(logFiles, detailedPlotBool, classesFromEachLogFile, movingAverSubeps) :
# Two rows, Validation and Accuracy
# Each of these has as many sublists as the number of experiments (logFiles) X Classes!
# Each of these sublists has a 5/4-entries sublist. Mean Accuracy/Sens/Spec/DSC-on-samples/DSC-from-full-segm-of-volumes (val only). OR just 1, if basic.
measuredMetricsFromAllExperiments = [[],[]] #[0] validation, [1] training measurements.
for logFile_i in xrange(0, len(logFiles)) :
if not detailedPlotBool :
( measuredMetricsFromThisLogValidation,
measuredMetricsFromThisLogTraining ) = parseBasicMetricsFromThisLog( logFiles[logFile_i], movingAverSubeps )
else :
( measuredMetricsFromThisLogValidation,
measuredMetricsFromThisLogTraining ) = parseDetailedMetricsFromThisLog( logFiles[logFile_i], classesFromEachLogFile[logFile_i], movingAverSubeps )
measuredMetricsFromAllExperiments[0] += measuredMetricsFromThisLogValidation
measuredMetricsFromAllExperiments[1] += measuredMetricsFromThisLogTraining
measuredMetricsFromAllExperiments = applyMovingAverageToAllButDscFullSeg(detailedPlotBool, measuredMetricsFromAllExperiments, movingAverSubeps )
return measuredMetricsFromAllExperiments
################################# END OF FUNCTIONS FOR THE PARSING OF MEASUREMENTS ########################################################
#========================================
# PLOTTING
#========================================
def plotProgressBasic(measuredMetricsFromAllExperiments, legendList, movingAverSubeps, subepochsPerEpOfExpers, saveFigureBool) :
colors = ["r","g","b","c","m","k"]
linestyles = ['-', '--', ':', '_', '-.']
subplotTitles = [ ["Mean Accuracy"], # Validation
["Mean Accuracy"] # Training
]
fontSizeSubplotTitles = 14; fontSizeXTickLabel = 12; fontSizeYTickLabel = 12; fontSizeXAxisLabel = 12; fontSizeYAxisLabel = 14; linewidthInPlots = 1.5;
legendFontSize = 12; legendNumberOfColumns = 8;
#plt.close('all')
#plt.subplots(rows,columns): returns: (figure, axes), where axes is an array, one element for each subplot, of rows and columns as I specify!
numberOfMetricsPlotted = len(measuredMetricsFromAllExperiments[0][0])
fig, axes = plt.subplots(2, numberOfMetricsPlotted, sharex=False, sharey=False)
inchesForMainPlotPart = 7; inchesForLegend = 0.6; percForMain = inchesForMainPlotPart*1.0/(inchesForMainPlotPart+inchesForLegend); percForLegend = 1.-percForMain
fig.set_size_inches(15,inchesForMainPlotPart+inchesForLegend); #changes width/height of the figure. VERY IMPORTANT
fig.set_dpi(100); #changes width/height of the figure.
fig.subplots_adjust(left=0.05, bottom = 0.1*percForMain + percForLegend, right=0.98, top=0.92*percForMain+percForLegend, wspace=0.25, hspace=0.4*percForMain)
fig.canvas.set_window_title(os.path.basename(__file__))
fig.suptitle(os.path.basename(__file__) + ": Moving Average over ["+ str(movingAverSubeps)+"] value. For each plotted experiment, Subepochs per Epoch: " + str(subepochsPerEpOfExpers), fontsize=8)#, fontweight='bold')
maxNumOfEpsDurationOfExps = 0 # The number of epochs that the longest experiment lasted.
for valOrTrain_i in xrange(0, len(measuredMetricsFromAllExperiments)) :
for valOrTrainExperiment_i in xrange(0, len(measuredMetricsFromAllExperiments[valOrTrain_i])) :
valOrTrainExperiment = measuredMetricsFromAllExperiments[valOrTrain_i][valOrTrainExperiment_i]
for metric_i in xrange(0, len(valOrTrainExperiment)) :
numberOfSubsPerEpoch = subepochsPerEpOfExpers[valOrTrainExperiment_i]
numberOfSubepochsRan = len(valOrTrainExperiment[metric_i])
numberOfEpochsRan = numberOfSubepochsRan*1.0/numberOfSubsPerEpoch
maxNumOfEpsDurationOfExps = maxNumOfEpsDurationOfExps if maxNumOfEpsDurationOfExps >= numberOfEpochsRan else numberOfEpochsRan
xIter = np.linspace(0, numberOfEpochsRan, numberOfSubepochsRan, endpoint=True) #endpoint=True includes it as the final point.
axis = axes[valOrTrain_i] if numberOfMetricsPlotted == 1 else axes[valOrTrain_i, metric_i] # No 2nd index when subplot(X, 1, ...)
axis.plot(xIter, valOrTrainExperiment[metric_i], color = colors[valOrTrainExperiment_i%len(colors)], linestyle = linestyles[valOrTrainExperiment_i/len(colors)], label=legendList[valOrTrainExperiment_i], linewidth=linewidthInPlots)
axis.set_title(subplotTitles[valOrTrain_i][metric_i], fontsize=fontSizeSubplotTitles, y=1.022)
axis.yaxis.grid(True, zorder=0)
axis.set_xlim([0,maxNumOfEpsDurationOfExps])
axis.set_xlabel('Epoch', fontsize=fontSizeXAxisLabel)
for train0AndValidation1 in [0,1]:
axis = axes[train0AndValidation1] if numberOfMetricsPlotted == 1 else axes[train0AndValidation1][axis_i]
axis.yaxis.grid(True, linestyle='--', which='major', color='black', alpha=1.0)
axis.tick_params(axis='y', labelsize=fontSizeYTickLabel)
axes[0].set_ylim(0., 1.);
axes[1].set_ylim(0., 1.);
axes[0].set_ylabel('Validation', fontsize=fontSizeYAxisLabel)
axes[1].set_ylabel('Training', fontsize=fontSizeYAxisLabel)
"""
Moving the legend-box:
- You grab a subplot. (depending on the axis that you ll use at: axis.legend(...))
- Then, you specify with loc=, the anchor of the LEGENDBOX that you will move in relation to the BOTTOM-LEFT corner of the above axis..
loc = 'upper right' (1), 'upper left' (2), 'lower left' (3), 'lower right' (4)
- bbox_to_anchor=(x-from-left, y-from-bottom, width, height). x and y can be negatives. Specify how much to move legend's loc from the bottom left corner of the axis.
x, y, width and height are floats, giving the percentage of the AXIS's size. Eg x=0.5, y=0.5 moves it at the middle of the subplot.
"""
leg = axes[1].legend(loc='upper left', bbox_to_anchor=(0., -.25, 0., 0.),#(0., -1.3, 1., 1.),
ncol=legendNumberOfColumns, borderaxespad=0. , fontsize=legendFontSize, labelspacing = 0., columnspacing=1.0)#mode="expand",
#Make the lines in the legend wider.
for legobj in leg.legendHandles:
legobj.set_linewidth(6.0)
if saveFigureBool :
plt.savefig('./trainingProgress.pdf', dpi=fig.dpi)#, bbox_inches='tight')
plt.show()
def plotProgressDetailed(measuredMetricsFromAllExperiments, legendList, movingAverSubeps, subepochsPerEpOfExpers, epochsPerFullInferOfExpers, saveFigureBool) :
colors = ["r","g","b","c","m","k"]
linestyles = ['-', '--', ':', '_', '-.']
subplotTitles = [ ["Mean Accuracy", "Sensitivity", "Specificity", "DSC (samples)", "DSC (full-segm)"], # Validation
["Mean Accuracy", "Sensitivity", "Specificity", "DSC (samples)", "DSC (full-segm)"] # Training
]
fontSizeSubplotTitles = 14; fontSizeXTickLabel = 12; fontSizeYTickLabel = 12; fontSizeXAxisLabel = 12; fontSizeYAxisLabel = 14; linewidthInPlots = 1.5;
legendFontSize = 12; legendNumberOfColumns = 8;
#plt.close('all')
#plt.subplots(rows,columns): returns: (figure, axes), where axes is an array, one element for each subplot, of rows and columns as I specify!
fig, axes = plt.subplots(2, 5, sharex=False, sharey=False)
inchesForMainPlotPart = 7; inchesForLegend = 0.6; percForMain = inchesForMainPlotPart*1.0/(inchesForMainPlotPart+inchesForLegend); percForLegend = 1.-percForMain
fig.set_size_inches(15,inchesForMainPlotPart+inchesForLegend); #changes width/height of the figure. VERY IMPORTANT
fig.set_dpi(100); #changes width/height of the figure.
fig.subplots_adjust(left=0.05, bottom = 0.1*percForMain + percForLegend, right=0.98, top=0.92*percForMain+percForLegend, wspace=0.25, hspace=0.4*percForMain)
fig.canvas.set_window_title(os.path.basename(__file__))
fig.suptitle(os.path.basename(__file__) + ": Moving Average over ["+ str(movingAverSubeps)+"] value. For each plotted experiment, Subepochs per Epoch: " + str(subepochsPerEpOfExpers) + ", Epochs between Full-Segmentations: " + str(epochsPerFullInferOfExpers), fontsize=8)#, fontweight='bold')
maxNumOfEpsDurationOfExps = 0 # The number of epochs that the longest experiment lasted.
for valOrTrain_i in xrange(0, len(measuredMetricsFromAllExperiments)) :
for valOrTrainExperiment_i in xrange(0, len(measuredMetricsFromAllExperiments[valOrTrain_i])) :
valOrTrainExperiment = measuredMetricsFromAllExperiments[valOrTrain_i][valOrTrainExperiment_i]
for meanPosNegDice1_i in xrange(0, len(valOrTrainExperiment)) :
numberOfSubsPerEpoch = subepochsPerEpOfExpers[valOrTrainExperiment_i]
numberOfEpsBetweenFullInf = epochsPerFullInferOfExpers[valOrTrainExperiment_i]
if meanPosNegDice1_i <> 4 : #Not for DSC full inference.
numberOfSubepochsRan = len(valOrTrainExperiment[meanPosNegDice1_i])
numberOfEpochsRan = numberOfSubepochsRan*1.0/numberOfSubsPerEpoch
maxNumOfEpsDurationOfExps = maxNumOfEpsDurationOfExps if maxNumOfEpsDurationOfExps >= numberOfEpochsRan else numberOfEpochsRan
xIter = np.linspace(0, numberOfEpochsRan, numberOfSubepochsRan, endpoint=True) #endpoint=True includes it as the final point.
else : #DSC Full inference.
#The -1 here is because for the DSC I previously prepended a 0 element (at 0th iteration).
numberOfFullInfRanPlusOneAt0 = len(valOrTrainExperiment[meanPosNegDice1_i])
numberOfEpochsRan = (numberOfFullInfRanPlusOneAt0 - 1) * numberOfEpsBetweenFullInf
maxNumOfEpsDurationOfExps = maxNumOfEpsDurationOfExps if maxNumOfEpsDurationOfExps >= numberOfEpochsRan else numberOfEpochsRan
xIter = np.linspace(0, numberOfEpochsRan, numberOfFullInfRanPlusOneAt0, endpoint=True)
axes[valOrTrain_i, meanPosNegDice1_i].plot(xIter, valOrTrainExperiment[meanPosNegDice1_i], color = colors[valOrTrainExperiment_i%len(colors)], linestyle = linestyles[valOrTrainExperiment_i/len(colors)], label=legendList[valOrTrainExperiment_i], linewidth=linewidthInPlots)
axes[valOrTrain_i, meanPosNegDice1_i].set_title(subplotTitles[valOrTrain_i][meanPosNegDice1_i], fontsize=fontSizeSubplotTitles, y=1.022)
axes[valOrTrain_i, meanPosNegDice1_i].yaxis.grid(True, zorder=0)
axes[valOrTrain_i, meanPosNegDice1_i].set_xlim([0,maxNumOfEpsDurationOfExps])
axes[valOrTrain_i, meanPosNegDice1_i].set_xlabel('Epoch', fontsize=fontSizeXAxisLabel)
for train0AndValidation1 in [0,1]:
for axis in axes[train0AndValidation1]:
#plt.setp(axis.get_xticklabels(), rotation='horizontal', fontsize=fontSizeXTickLabel) #In case I want something vertical, this is how I change it.
#plt.setp(axis.get_yticklabels(), rotation='horizontal', fontsize=fontSizeYTickLabel)
#axis.xticks(xCustomTicksEpochs, labels, rotation='vertical') If I d like to also give labels, this is how I do it.
#In case I want to manually define where to have xticks.
#axis.set_xticks(xCustomTicksSubepochs)
#axis.set_xticklabels(xCustomTicksLabelsEpochs, fontsize = fontSizeXTickLabel)
axis.yaxis.grid(True, linestyle='--', which='major', color='black', alpha=1.0)
axis.tick_params(axis='y', labelsize=fontSizeYTickLabel)
axes[0,0].set_ylim(0., 1.); axes[0,1].set_ylim(0., 1.); axes[0,2].set_ylim(0., 1.); axes[0,3].set_ylim(0., 1.); axes[0,4].set_ylim(0., 1.)
axes[1,0].set_ylim(0., 1.); axes[1,1].set_ylim(0., 1.); axes[1,2].set_ylim(0., 1.); axes[1,3].set_ylim(0., 1.); axes[1,4].set_ylim(0., 1.)
axes[0,0].set_ylabel('Validation', fontsize=fontSizeYAxisLabel)
axes[1,0].set_ylabel('Training', fontsize=fontSizeYAxisLabel)
"""
Moving the legend-box:
- You grab a subplot. (depending on the axis that you ll use at: axis.legend(...))
- Then, you specify with loc=, the anchor of the LEGENDBOX that you will move in relation to the BOTTOM-LEFT corner of the above axis..
loc = 'upper right' (1), 'upper left' (2), 'lower left' (3), 'lower right' (4)
- bbox_to_anchor=(x-from-left, y-from-bottom, width, height). x and y can be negatives. Specify how much to move legend's loc from the bottom left corner of the axis.
x, y, width and height are floats, giving the percentage of the AXIS's size. Eg x=0.5, y=0.5 moves it at the middle of the subplot.
"""
leg = axes[1,0].legend(loc='upper left', bbox_to_anchor=(0., -.25, 0., 0.),#(0., -1.3, 1., 1.),
ncol=legendNumberOfColumns, borderaxespad=0. , fontsize=legendFontSize, labelspacing = 0., columnspacing=1.0)#mode="expand",
#Make the lines in the legend wider.
for legobj in leg.legendHandles:
legobj.set_linewidth(6.0)
if saveFigureBool :
plt.savefig('./trainingProgress.pdf', dpi=fig.dpi)#, bbox_inches='tight')
plt.show()
if __name__ == '__main__':
myArgParser = setupArgParser()
args = myArgParser.parse_args()
if len(sys.argv) == 1:
print("For help on the usage of this script, please use the option [-h]."); exit(1)
detailedPlotBool = args.detailed_plot
movingAverSubeps = args.moving_average
saveFigBool = args.save_figure
logFiles = args.log_files
(listOfExperimentsNames, subepochsPerEpFromEachLog, epochsPerFullInferFromEachLog) = parseVariablesOfTrainingSessionsFromListOfLogs(logFiles)
if not detailedPlotBool: # basic plot
if args.classes_to_plot :
print "ERROR: -c/--classes option should only be provided when -d/--detailed plotting is specified. Default basic plotting parses and shows overall and not class-specific accuracy."
print "Exiting!"; exit(1)
measuredMetricsFromAllExperiments = optimizedParseMetricsFromLogs(logFiles, detailedPlotBool, None, movingAverSubeps)
plotProgressBasic(measuredMetricsFromAllExperiments, listOfExperimentsNames, movingAverSubeps, subepochsPerEpFromEachLog, saveFigBool)
else : # detailed plot
if not args.classes_to_plot : #Default class when none given as argument
classesFromEachLogFile = len(logFiles)*[[0]]
elif len(logFiles) == 1 : # 1 log file only
classesFromEachLogFile = [ args.classes_to_plot ] # [ [class0, class1, ...] ]
elif len(args.classes_to_plot) == 1 : # multiple logs provided, and 1 class argument
classesFromEachLogFile = [ [ args.classes_to_plot[0] ] for i in xrange(len(logFiles)) ] # [ [class0], [class0], ... ]
elif len(args.classes_to_plot) == len(logFiles) :
classesFromEachLogFile = [ [ args.classes_to_plot[i] ] for i in xrange(len(logFiles)) ] # [ [class0], [class1], [class2], ...]
else : # logFiles provided, multiple classes provided, but not the same number as the log files.
print("ERROR:\tThe number of log files given is not the same with the number of arguments that specify which class's accuracy to plot from each log file.")
print("\tPlease provide the same number of Class arguments, or just 1, if the same class is to be plotted from all log files. Exiting."); exit(1)
# Parse the logs and get the names of the files to put in legend, the subepochs per epoch in each session and the number of epochs between full-segmentation.
"""
# Hack for convenience. Comment out the above, uncomment this, pass sth random as logfile and it will give the below hard-coded values to the variables. In case I want to use it this way.
logFiles = [ "path-to-log-file1", "path-to-log-file2" ]
classesFromEachLogFile = [ [1,2], [1] ]
subepochsPerEpFromEachLog = [20]*len(logFiles)
epochsPerFullInferFromEachLog = [5]*len(logFiles)
listOfExperimentsNames = [ "TrainingSession1", "TrainingSession2" ]
"""
measuredMetricsFromAllExperiments = optimizedParseMetricsFromLogs( logFiles, detailedPlotBool, classesFromEachLogFile, movingAverSubeps )
legendList = makeLegendList(listOfExperimentsNames, classesFromEachLogFile)
(subepochsPerEpOfExpers, epochsPerFullInferOfExpers) = makeHelperVariablesPerExperiment(logFiles, classesFromEachLogFile, subepochsPerEpFromEachLog, epochsPerFullInferFromEachLog)
plotProgressDetailed(measuredMetricsFromAllExperiments, legendList, movingAverSubeps, subepochsPerEpOfExpers, epochsPerFullInferOfExpers, saveFigBool)