-
Notifications
You must be signed in to change notification settings - Fork 79
/
rtx_timer_test.go
385 lines (326 loc) · 10.6 KB
/
rtx_timer_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// SPDX-FileCopyrightText: 2023 The Pion community <https://pion.ly>
// SPDX-License-Identifier: MIT
package sctp
import (
"math"
"sync/atomic"
"testing"
"time"
"github.com/stretchr/testify/assert"
)
func TestRTOManager(t *testing.T) {
t.Run("initial values", func(t *testing.T) {
m := newRTOManager(0)
assert.Equal(t, rtoInitial, m.rto, "should be rtoInitial")
assert.Equal(t, rtoInitial, m.getRTO(), "should be rtoInitial")
assert.Equal(t, float64(0), m.srtt, "should be 0")
assert.Equal(t, float64(0), m.rttvar, "should be 0")
})
t.Run("RTO calculation (small RTT)", func(t *testing.T) {
var rto float64
m := newRTOManager(0)
exp := []int32{
1800,
1500,
1275,
1106,
1000, // capped at RTO.Min
}
for i := 0; i < 5; i++ {
m.setNewRTT(600)
rto = m.getRTO()
assert.Equal(t, exp[i], int32(math.Floor(rto)), "should be equal")
}
})
t.Run("RTO calculation (large RTT)", func(t *testing.T) {
var rto float64
m := newRTOManager(0)
exp := []int32{
60000, // capped at RTO.Max
60000, // capped at RTO.Max
60000, // capped at RTO.Max
55312,
48984,
}
for i := 0; i < 5; i++ {
m.setNewRTT(30000)
rto = m.getRTO()
assert.Equal(t, exp[i], int32(math.Floor(rto)), "should be equal")
}
})
t.Run("calculateNextTimeout", func(t *testing.T) {
var rto float64
rto = calculateNextTimeout(1.0, 0, defaultRTOMax)
assert.Equal(t, float64(1), rto, "should match")
rto = calculateNextTimeout(1.0, 1, defaultRTOMax)
assert.Equal(t, float64(2), rto, "should match")
rto = calculateNextTimeout(1.0, 2, defaultRTOMax)
assert.Equal(t, float64(4), rto, "should match")
rto = calculateNextTimeout(1.0, 30, defaultRTOMax)
assert.Equal(t, float64(60000), rto, "should match")
rto = calculateNextTimeout(1.0, 63, defaultRTOMax)
assert.Equal(t, float64(60000), rto, "should match")
rto = calculateNextTimeout(1.0, 64, defaultRTOMax)
assert.Equal(t, float64(60000), rto, "should match")
})
t.Run("calculateNextTimeout w/ RTOMax", func(t *testing.T) {
var rto float64
rto = calculateNextTimeout(1.0, 0, 2.0)
assert.Equal(t, 1.0, rto, "should match")
rto = calculateNextTimeout(1.5, 1, 2.0)
assert.Equal(t, 2.0, rto, "should match")
rto = calculateNextTimeout(1.0, 10, 2.0)
assert.Equal(t, 2.0, rto, "should match")
rto = calculateNextTimeout(1.0, 31, 1000.0)
assert.Equal(t, 1000.0, rto, "should match")
})
t.Run("reset", func(t *testing.T) {
m := newRTOManager(0)
for i := 0; i < 10; i++ {
m.setNewRTT(200)
}
m.reset()
assert.Equal(t, rtoInitial, m.getRTO(), "should be rtoInitial")
assert.Equal(t, float64(0), m.srtt, "should be 0")
assert.Equal(t, float64(0), m.rttvar, "should be 0")
})
}
type (
onRTO func(id int, n uint)
onRtxFailure func(id int)
)
type testTimerObserver struct {
onRTO onRTO
onRtxFailure onRtxFailure
}
func (o *testTimerObserver) onRetransmissionTimeout(id int, n uint) {
o.onRTO(id, n)
}
func (o *testTimerObserver) onRetransmissionFailure(id int) {
o.onRtxFailure(id)
}
func TestRtxTimer(t *testing.T) {
t.Run("callback interval", func(t *testing.T) {
timerID := 0
var nCbs int32
rt := newRTXTimer(timerID, &testTimerObserver{
onRTO: func(id int, _ uint) {
atomic.AddInt32(&nCbs, 1)
// 30 : 1 (30)
// 60 : 2 (90)
// 120: 3 (210)
// 240: 4 (550) <== expected in 650 msec
assert.Equal(t, timerID, id, "unexpted timer ID: %d", id)
},
onRtxFailure: func(_ int) {},
}, pathMaxRetrans, 0)
assert.False(t, rt.isRunning(), "should not be running")
// since := time.Now()
ok := rt.start(30)
assert.True(t, ok, "should be true")
assert.True(t, rt.isRunning(), "should be running")
time.Sleep(650 * time.Millisecond)
rt.stop()
assert.False(t, rt.isRunning(), "should not be running")
assert.Equal(t, int32(4), atomic.LoadInt32(&nCbs), "should be called 4 times")
})
t.Run("last start wins", func(t *testing.T) {
timerID := 3
var nCbs int32
rt := newRTXTimer(timerID, &testTimerObserver{
onRTO: func(id int, _ uint) {
atomic.AddInt32(&nCbs, 1)
assert.Equal(t, timerID, id, "unexpted timer ID: %d", id)
},
onRtxFailure: func(_ int) {},
}, pathMaxRetrans, 0)
interval := float64(30.0)
ok := rt.start(interval)
assert.True(t, ok, "should be accepted")
ok = rt.start(interval * 99) // should ignored
assert.False(t, ok, "should be ignored")
ok = rt.start(interval * 99) // should ignored
assert.False(t, ok, "should be ignored")
time.Sleep(time.Duration(interval*1.5) * time.Millisecond)
rt.stop()
assert.False(t, rt.isRunning(), "should not be running")
assert.Equal(t, int32(1), atomic.LoadInt32(&nCbs), "must be called once")
})
t.Run("stop right afeter start", func(t *testing.T) {
timerID := 3
var nCbs int32
rt := newRTXTimer(timerID, &testTimerObserver{
onRTO: func(id int, _ uint) {
atomic.AddInt32(&nCbs, 1)
assert.Equal(t, timerID, id, "unexpted timer ID: %d", id)
},
onRtxFailure: func(_ int) {},
}, pathMaxRetrans, 0)
interval := float64(30.0)
ok := rt.start(interval)
assert.True(t, ok, "should be accepted")
rt.stop()
time.Sleep(time.Duration(interval*1.5) * time.Millisecond)
rt.stop()
assert.False(t, rt.isRunning(), "should not be running")
assert.Equal(t, int32(0), atomic.LoadInt32(&nCbs), "no callback should be made")
})
t.Run("start, stop then start", func(t *testing.T) {
timerID := 1
var nCbs int32
rt := newRTXTimer(timerID, &testTimerObserver{
onRTO: func(id int, _ uint) {
atomic.AddInt32(&nCbs, 1)
assert.Equal(t, timerID, id, "unexpted timer ID: %d", id)
},
onRtxFailure: func(_ int) {},
}, pathMaxRetrans, 0)
interval := float64(30.0)
ok := rt.start(interval)
assert.True(t, ok, "should be accepted")
rt.stop()
assert.False(t, rt.isRunning(), "should NOT be running")
ok = rt.start(interval)
assert.True(t, ok, "should be accepted")
assert.True(t, rt.isRunning(), "should be running")
time.Sleep(time.Duration(interval*1.5) * time.Millisecond)
rt.stop()
assert.False(t, rt.isRunning(), "should NOT be running")
assert.Equal(t, int32(1), atomic.LoadInt32(&nCbs), "must be called once")
})
t.Run("start and stop in a tight loop", func(t *testing.T) {
timerID := 2
var nCbs int32
rt := newRTXTimer(timerID, &testTimerObserver{
onRTO: func(id int, _ uint) {
atomic.AddInt32(&nCbs, 1)
t.Log("onRTO() called")
assert.Equal(t, timerID, id, "unexpted timer ID: %d", id)
},
onRtxFailure: func(_ int) {},
}, pathMaxRetrans, 0)
for i := 0; i < 1000; i++ {
ok := rt.start(30)
assert.True(t, ok, "should be accepted")
assert.True(t, rt.isRunning(), "should be running")
rt.stop()
assert.False(t, rt.isRunning(), "should NOT be running")
}
assert.Equal(t, int32(0), atomic.LoadInt32(&nCbs), "no callback should be made")
})
t.Run("timer should stop after rtx failure", func(t *testing.T) {
timerID := 4
var nCbs int32
doneCh := make(chan bool)
since := time.Now()
var elapsed float64 // in seconds
rt := newRTXTimer(timerID, &testTimerObserver{
onRTO: func(id int, nRtos uint) {
assert.Equal(t, timerID, id, "unexpted timer ID: %d", id)
t.Logf("onRTO: n=%d elapsed=%.03f\n", nRtos, time.Since(since).Seconds())
atomic.AddInt32(&nCbs, 1)
},
onRtxFailure: func(id int) {
assert.Equal(t, timerID, id, "unexpted timer ID: %d", id)
elapsed = time.Since(since).Seconds()
t.Logf("onRtxFailure: elapsed=%.03f\n", elapsed)
doneCh <- true
},
}, pathMaxRetrans, 0)
// RTO(msec) Total(msec)
// 10 10 1st RTO
// 20 30 2nd RTO
// 40 70 3rd RTO
// 80 150 4th RTO
// 160 310 5th RTO (== Path.Max.Retrans)
// 320 630 Failure
interval := float64(10.0)
ok := rt.start(interval)
assert.True(t, ok, "should be accepted")
assert.True(t, rt.isRunning(), "should be running")
<-doneCh
assert.False(t, rt.isRunning(), "should not be running")
assert.Equal(t, int32(5), atomic.LoadInt32(&nCbs), "should be called 5 times")
assert.True(t, elapsed > 0.600, "must have taken more than 600 msec")
assert.True(t, elapsed < 0.700, "must fail in less than 700 msec")
})
t.Run("timer should not stop if maxRetrans is 0", func(t *testing.T) {
timerID := 4
maxRtos := uint(6)
var nCbs int32
doneCh := make(chan bool)
since := time.Now()
var elapsed float64 // in seconds
rt := newRTXTimer(timerID, &testTimerObserver{
onRTO: func(id int, nRtos uint) {
assert.Equal(t, timerID, id, "unexpted timer ID: %d", id)
elapsed = time.Since(since).Seconds()
t.Logf("onRTO: n=%d elapsed=%.03f\n", nRtos, elapsed)
atomic.AddInt32(&nCbs, 1)
if nRtos == maxRtos {
doneCh <- true
}
},
onRtxFailure: func(_ int) {
assert.Fail(t, "timer should not fail")
},
}, 0, 0)
// RTO(msec) Total(msec)
// 10 10 1st RTO
// 20 30 2nd RTO
// 40 70 3rd RTO
// 80 150 4th RTO
// 160 310 5th RTO
// 320 630 6th RTO => exit test (timer should still be running)
interval := float64(10.0)
ok := rt.start(interval)
assert.True(t, ok, "should be accepted")
assert.True(t, rt.isRunning(), "should be running")
<-doneCh
assert.True(t, rt.isRunning(), "should still be running")
assert.Equal(t, int32(6), atomic.LoadInt32(&nCbs), "should be called 6 times")
assert.True(t, elapsed > 0.600, "must have taken more than 600 msec")
assert.True(t, elapsed < 0.700, "must fail in less than 700 msec")
rt.stop()
})
t.Run("stop timer that is not running is noop", func(t *testing.T) {
timerID := 5
doneCh := make(chan bool)
rt := newRTXTimer(timerID, &testTimerObserver{
onRTO: func(id int, _ uint) {
assert.Equal(t, timerID, id, "unexpted timer ID: %d", id)
doneCh <- true
},
onRtxFailure: func(_ int) {},
}, pathMaxRetrans, 0)
for i := 0; i < 10; i++ {
rt.stop()
}
ok := rt.start(20)
assert.True(t, ok, "should be accepted")
assert.True(t, rt.isRunning(), "must be running")
<-doneCh
rt.stop()
assert.False(t, rt.isRunning(), "must be false")
})
t.Run("closed timer won't start", func(t *testing.T) {
var rtoCount int
timerID := 6
rt := newRTXTimer(timerID, &testTimerObserver{
onRTO: func(_ int, _ uint) {
rtoCount++
},
onRtxFailure: func(_ int) {},
}, pathMaxRetrans, 0)
ok := rt.start(20)
assert.True(t, ok, "should be accepted")
assert.True(t, rt.isRunning(), "must be running")
rt.close()
assert.False(t, rt.isRunning(), "must be false")
ok = rt.start(20)
assert.False(t, ok, "should not start")
assert.False(t, rt.isRunning(), "must not be running")
time.Sleep(100 * time.Millisecond)
assert.Equal(t, 0, rtoCount, "RTO should not occur")
})
}