From 33cf91bbc45e447fc92dc66cae1948eb124532bd Mon Sep 17 00:00:00 2001 From: "Cyril S." <98121174+cyrilS-dev@users.noreply.github.com> Date: Mon, 23 Sep 2024 17:44:14 +0200 Subject: [PATCH] Implement Sentry instrumentation for performance and error tracking (#470) * feat: Add Sentry support in FrameProcessor This update add optional Sentry integration for performance tracking and error monitoring. Key changes include: - Add conditional Sentry import and initialization check - Implement Sentry spans in FrameProcessorMetrics to measure TTFB (Time To First Byte) and processing time when Sentry is available - Maintain existing metrics functionality with MetricsFrame regardless of Sentry availability * feat: Enable metrics in DeepgramSTTService for Sentry This commit enhances the DeepgramSTTService class to enable metrics generation for use with Sentry. Key changes include: 1. Enable general metrics generation: - Implement `can_generate_metrics` method, returning True when VAD is enabled - This allows metrics to be collected and used by both Sentry and the metrics system in frame_processor.py 2. Integrate Sentry-compatible performance tracking: - Add start_ttfb_metrics and start_processing_metrics calls in the VAD speech detection handler - Implement stop_ttfb_metrics call when receiving transcripts - Add stop_processing_metrics for final transcripts 3. Enhance VAD support for metrics: - Add `vad_enabled` property to check VAD event availability - Implement VAD-based speech detection handler for precise metric timing These changes enable detailed performance tracking via both Sentry and the general metrics system when VAD is active. This allows for better monitoring and analysis of the speech-to-text process, providing valuable insights through Sentry and any other metrics consumers in the pipeline. * Update frame_processor.py * Refactor to support flexible metrics implementation - Modified the __init__ method to accept a metrics parameter that is either FrameProcessorMetrics or one of its subclasses - Updated the metrics initialization to create an instance with the processor's name - Moved all FrameProcessorMetrics-related logic to a new processors\metrics\base.py file * Implement flexible metrics system with Sentry integration 1. Created a new metrics module in processors/metrics/ 2. Implemented FrameProcessorMetrics base class in base.py: 3. Implemented SentryMetrics class in sentry.py: - Inherits from FrameProcessorMetrics - Integrates with Sentry SDK for advanced metrics tracking - Implements Sentry-specific span creation and management for TTFB and processing metrics - Handles cases where Sentry is not available or initialized --- src/pipecat/processors/frame_processor.py | 84 ++----------------- .../metrics/frame_processor_metrics.py | 81 ++++++++++++++++++ src/pipecat/processors/metrics/sentry.py | 56 +++++++++++++ src/pipecat/services/deepgram.py | 28 +++++-- 4 files changed, 169 insertions(+), 80 deletions(-) create mode 100644 src/pipecat/processors/metrics/frame_processor_metrics.py create mode 100644 src/pipecat/processors/metrics/sentry.py diff --git a/src/pipecat/processors/frame_processor.py b/src/pipecat/processors/frame_processor.py index e44b8b0ff..69c957c97 100644 --- a/src/pipecat/processors/frame_processor.py +++ b/src/pipecat/processors/frame_processor.py @@ -14,18 +14,14 @@ EndFrame, ErrorFrame, Frame, - MetricsFrame, StartFrame, StartInterruptionFrame, StopInterruptionFrame, SystemFrame) from pipecat.metrics.metrics import ( LLMTokenUsage, - LLMUsageMetricsData, - MetricsData, - ProcessingMetricsData, - TTFBMetricsData, - TTSUsageMetricsData) + MetricsData) +from pipecat.processors.metrics.frame_processor_metrics import FrameProcessorMetrics from pipecat.utils.utils import obj_count, obj_id from loguru import logger @@ -36,78 +32,13 @@ class FrameDirection(Enum): UPSTREAM = 2 -class FrameProcessorMetrics: - def __init__(self, name: str): - self._core_metrics_data = MetricsData(processor=name) - self._start_ttfb_time = 0 - self._start_processing_time = 0 - self._should_report_ttfb = True - - def _processor_name(self): - return self._core_metrics_data.processor - - def _model_name(self): - return self._core_metrics_data.model - - def set_core_metrics_data(self, data: MetricsData): - self._core_metrics_data = data - - async def start_ttfb_metrics(self, report_only_initial_ttfb): - if self._should_report_ttfb: - self._start_ttfb_time = time.time() - self._should_report_ttfb = not report_only_initial_ttfb - - async def stop_ttfb_metrics(self): - if self._start_ttfb_time == 0: - return None - - value = time.time() - self._start_ttfb_time - logger.debug(f"{self._processor_name()} TTFB: {value}") - ttfb = TTFBMetricsData( - processor=self._processor_name(), - value=value, - model=self._model_name()) - self._start_ttfb_time = 0 - return MetricsFrame(data=[ttfb]) - - async def start_processing_metrics(self): - self._start_processing_time = time.time() - - async def stop_processing_metrics(self): - if self._start_processing_time == 0: - return None - - value = time.time() - self._start_processing_time - logger.debug(f"{self._processor_name()} processing time: {value}") - processing = ProcessingMetricsData( - processor=self._processor_name(), value=value, model=self._model_name()) - self._start_processing_time = 0 - return MetricsFrame(data=[processing]) - - async def start_llm_usage_metrics(self, tokens: LLMTokenUsage): - logger.debug( - f"{self._processor_name()} prompt tokens: {tokens.prompt_tokens}, completion tokens: {tokens.completion_tokens}") - value = LLMUsageMetricsData( - processor=self._processor_name(), - model=self._model_name(), - value=tokens) - return MetricsFrame(data=[value]) - - async def start_tts_usage_metrics(self, text: str): - characters = TTSUsageMetricsData( - processor=self._processor_name(), - model=self._model_name(), - value=len(text)) - logger.debug(f"{self._processor_name()} usage characters: {characters.value}") - return MetricsFrame(data=[characters]) - - class FrameProcessor: def __init__( self, *, name: str | None = None, + metrics: FrameProcessorMetrics | None = None, sync: bool = True, loop: asyncio.AbstractEventLoop | None = None, **kwargs): @@ -129,7 +60,8 @@ def __init__( self._report_only_initial_ttfb = False # Metrics - self._metrics = FrameProcessorMetrics(name=self.name) + self._metrics = metrics or FrameProcessorMetrics() + self._metrics.set_processor_name(self.name) # Every processor in Pipecat should only output frames from a single # task. This avoid problems like audio overlapping. System frames are @@ -262,14 +194,16 @@ async def __internal_push_frame(self, frame: Frame, direction: FrameDirection): logger.trace(f"Pushing {frame} from {self} to {self._next}") await self._next.process_frame(frame, direction) elif direction == FrameDirection.UPSTREAM and self._prev: - logger.trace(f"Pushing {frame} upstream from {self} to {self._prev}") + logger.trace(f"Pushing {frame} upstream from { + self} to {self._prev}") await self._prev.process_frame(frame, direction) except Exception as e: logger.exception(f"Uncaught exception in {self}: {e}") def __create_push_task(self): self.__push_queue = asyncio.Queue() - self.__push_frame_task = self.get_event_loop().create_task(self.__push_frame_task_handler()) + self.__push_frame_task = self.get_event_loop( + ).create_task(self.__push_frame_task_handler()) async def __push_frame_task_handler(self): running = True diff --git a/src/pipecat/processors/metrics/frame_processor_metrics.py b/src/pipecat/processors/metrics/frame_processor_metrics.py new file mode 100644 index 000000000..b9de3c2b4 --- /dev/null +++ b/src/pipecat/processors/metrics/frame_processor_metrics.py @@ -0,0 +1,81 @@ +import time + +from pipecat.frames.frames import MetricsFrame +from pipecat.metrics.metrics import ( + LLMTokenUsage, + LLMUsageMetricsData, + MetricsData, + ProcessingMetricsData, + TTFBMetricsData, + TTSUsageMetricsData) + +from loguru import logger + + +class FrameProcessorMetrics: + def __init__(self): + self._start_ttfb_time = 0 + self._start_processing_time = 0 + self._should_report_ttfb = True + + def _processor_name(self): + return self._core_metrics_data.processor + + def _model_name(self): + return self._core_metrics_data.model + + def set_core_metrics_data(self, data: MetricsData): + self._core_metrics_data = data + + def set_processor_name(self, name: str): + self._core_metrics_data = MetricsData(processor=name) + + async def start_ttfb_metrics(self, report_only_initial_ttfb): + if self._should_report_ttfb: + self._start_ttfb_time = time.time() + self._should_report_ttfb = not report_only_initial_ttfb + + async def stop_ttfb_metrics(self): + if self._start_ttfb_time == 0: + return None + + value = time.time() - self._start_ttfb_time + logger.debug(f"{self._processor_name()} TTFB: {value}") + ttfb = TTFBMetricsData( + processor=self._processor_name(), + value=value, + model=self._model_name()) + self._start_ttfb_time = 0 + return MetricsFrame(data=[ttfb]) + + async def start_processing_metrics(self): + self._start_processing_time = time.time() + + async def stop_processing_metrics(self): + if self._start_processing_time == 0: + return None + + value = time.time() - self._start_processing_time + logger.debug(f"{self._processor_name()} processing time: {value}") + processing = ProcessingMetricsData( + processor=self._processor_name(), value=value, model=self._model_name()) + self._start_processing_time = 0 + return MetricsFrame(data=[processing]) + + async def start_llm_usage_metrics(self, tokens: LLMTokenUsage): + logger.debug( + f"{self._processor_name()} prompt tokens: {tokens.prompt_tokens}, completion tokens: {tokens.completion_tokens}") + value = LLMUsageMetricsData( + processor=self._processor_name(), + model=self._model_name(), + value=tokens) + return MetricsFrame(data=[value]) + + async def start_tts_usage_metrics(self, text: str): + characters = TTSUsageMetricsData( + processor=self._processor_name(), + model=self._model_name(), + value=len(text)) + logger.debug(f"{self._processor_name()} usage characters: { + characters.value}") + return MetricsFrame(data=[characters]) diff --git a/src/pipecat/processors/metrics/sentry.py b/src/pipecat/processors/metrics/sentry.py new file mode 100644 index 000000000..da3057e76 --- /dev/null +++ b/src/pipecat/processors/metrics/sentry.py @@ -0,0 +1,56 @@ +import time +from loguru import logger + +try: + import sentry_sdk + sentry_available = sentry_sdk.is_initialized() + if not sentry_available: + logger.warning( + "Sentry SDK not initialized. Sentry features will be disabled.") +except ImportError: + sentry_available = False + logger.warning( + "Sentry SDK not installed. Sentry features will be disabled.") + +from pipecat.processors.metrics.frame_processor_metrics import FrameProcessorMetrics + + +class SentryMetrics(FrameProcessorMetrics): + def __init__(self): + super().__init__() + self._ttfb_metrics_span = None + self._processing_metrics_span = None + + async def start_ttfb_metrics(self, report_only_initial_ttfb): + if self._should_report_ttfb: + self._start_ttfb_time = time.time() + if sentry_available: + self._ttfb_metrics_span = sentry_sdk.start_span( + op="ttfb", + description=f"TTFB for {self._processor_name()}", + start_timestamp=self._start_ttfb_time + ) + logger.debug(f"Sentry Span ID: {self._ttfb_metrics_span.span_id} Description: { + self._ttfb_metrics_span.description} started.") + self._should_report_ttfb = not report_only_initial_ttfb + + async def stop_ttfb_metrics(self): + stop_time = time.time() + if sentry_available: + self._ttfb_metrics_span.finish(end_timestamp=stop_time) + + async def start_processing_metrics(self): + self._start_processing_time = time.time() + if sentry_available: + self._processing_metrics_span = sentry_sdk.start_span( + op="processing", + description=f"Processing for {self._processor_name()}", + start_timestamp=self._start_processing_time + ) + logger.debug(f"Sentry Span ID: {self._processing_metrics_span.span_id} Description: { + self._processing_metrics_span.description} started.") + + async def stop_processing_metrics(self): + stop_time = time.time() + if sentry_available: + self._processing_metrics_span.finish(end_timestamp=stop_time) diff --git a/src/pipecat/services/deepgram.py b/src/pipecat/services/deepgram.py index e3089dd0c..25f7b7a56 100644 --- a/src/pipecat/services/deepgram.py +++ b/src/pipecat/services/deepgram.py @@ -75,7 +75,8 @@ async def run_tts(self, text: str) -> AsyncGenerator[Frame, None]: logger.debug(f"Generating TTS: [{text}]") base_url = self._base_url - request_url = f"{base_url}?model={self._voice}&encoding={self._encoding}&container=none&sample_rate={self._sample_rate}" + request_url = f"{base_url}?model={self._voice}&encoding={ + self._encoding}&container=none&sample_rate={self._sample_rate}" headers = {"authorization": f"token {self._api_key}"} body = {"text": text} @@ -124,6 +125,7 @@ def __init__(self, smart_format=True, punctuate=True, profanity_filter=True, + vad_events=False, ), **kwargs): super().__init__(**kwargs) @@ -132,8 +134,20 @@ def __init__(self, self._client = DeepgramClient( api_key, config=DeepgramClientOptions(url=url, options={"keepalive": "true"})) - self._connection: AsyncListenWebSocketClient = self._client.listen.asyncwebsocket.v("1") - self._connection.on(LiveTranscriptionEvents.Transcript, self._on_message) + self._connection: AsyncListenWebSocketClient = self._client.listen.asyncwebsocket.v( + "1") + self._connection.on( + LiveTranscriptionEvents.Transcript, self._on_message) + if self.vad_enabled: + self._connection.on( + LiveTranscriptionEvents.SpeechStarted, self._on_speech_started) + + @property + def vad_enabled(self): + return self._live_options.vad_events + + def can_generate_metrics(self) -> bool: + return self.vad_enabled async def set_model(self, model: str): await super().set_model(model) @@ -161,9 +175,7 @@ async def cancel(self, frame: CancelFrame): await self._disconnect() async def run_stt(self, audio: bytes) -> AsyncGenerator[Frame, None]: - await self.start_processing_metrics() await self._connection.send(audio) - await self.stop_processing_metrics() yield None async def _connect(self): @@ -177,6 +189,10 @@ async def _disconnect(self): await self._connection.finish() logger.debug(f"{self}: Disconnected from Deepgram") + async def _on_speech_started(self, *args, **kwargs): + await self.start_ttfb_metrics() + await self.start_processing_metrics() + async def _on_message(self, *args, **kwargs): result: LiveResultResponse = kwargs["result"] if len(result.channel.alternatives) == 0: @@ -188,7 +204,9 @@ async def _on_message(self, *args, **kwargs): language = result.channel.alternatives[0].languages[0] language = Language(language) if len(transcript) > 0: + await self.stop_ttfb_metrics() if is_final: await self.push_frame(TranscriptionFrame(transcript, "", time_now_iso8601(), language)) + await self.stop_processing_metrics() else: await self.push_frame(InterimTranscriptionFrame(transcript, "", time_now_iso8601(), language))