diff --git a/src/dailyai/transports/daily_transport.py b/src/dailyai/transports/daily_transport.py index d510cadbb..68593db76 100644 --- a/src/dailyai/transports/daily_transport.py +++ b/src/dailyai/transports/daily_transport.py @@ -5,6 +5,7 @@ import threading import types +from enum import Enum from functools import partial from typing import Any @@ -26,6 +27,14 @@ from dailyai.transports.threaded_transport import ThreadedTransport +SAMPLE_RATE = 16000 +NUM_CHANNELS = 1 + +SPEECH_THRESHOLD = 0.90 +SPEECH_THRESHOLD_MS = 300 +SILENCE_THRESHOLD_MS = 700 +VAD_RESET_PERIOD_MS = 2000 + class DailyTransport(ThreadedTransport, EventHandler): _daily_initialized = False @@ -48,6 +57,7 @@ def __init__( start_transcription: bool = False, **kwargs, ): + kwargs['has_webrtc_vad'] = True # This will call ThreadedTransport.__init__ method, not EventHandler super().__init__(**kwargs) @@ -79,6 +89,12 @@ def __init__( self._event_handlers = {} + self.webrtc_vad = Daily.create_native_vad( + reset_period_ms=VAD_RESET_PERIOD_MS, + sample_rate=SAMPLE_RATE, + channels=NUM_CHANNELS + ) + def _patch_method(self, event_name, *args, **kwargs): try: for handler in self._event_handlers[event_name]: @@ -99,6 +115,17 @@ def _patch_method(self, event_name, *args, **kwargs): self._logger.error(f"Exception in event handler {event_name}: {e}") raise e + def _webrtc_vad_analyze(self): + buffer = self.read_audio_frames( + int(self._speaker_sample_rate / 100)) + if len(buffer) > 0: + confidence = self.webrtc_vad.analyze_frames(buffer) + # yeses = int(confidence * 20.0) + # nos = 20 - yeses + # out = "!" * yeses + "." * nos + # print(f"!!! confidence: {out}") + return confidence > 0.90 + def add_event_handler(self, event_name: str, handler): if not event_name.startswith("on_"): raise Exception( diff --git a/src/dailyai/transports/threaded_transport.py b/src/dailyai/transports/threaded_transport.py index 033cb97a2..a68992af6 100644 --- a/src/dailyai/transports/threaded_transport.py +++ b/src/dailyai/transports/threaded_transport.py @@ -62,7 +62,7 @@ def __init__( self._vad_stop_s = kwargs.get("vad_stop_s") or 0.8 self._context = kwargs.get("context") or [] self._vad_enabled = kwargs.get("vad_enabled") or False - + self._has_webrtc_vad = kwargs.get("has_webrtc_vad") or False if self._vad_enabled and self._speaker_enabled: raise Exception( "Sorry, you can't use speaker_enabled and vad_enabled at the same time. Please set one to False." @@ -80,11 +80,15 @@ def __init__( (self.model, self.utils) = torch.hub.load( repo_or_dir="snakers4/silero-vad", model="silero_vad", force_reload=False ) + print(f"!!! Loaded Silero VAD") except ModuleNotFoundError as e: - print(f"Exception: {e}") - print("In order to use VAD, you'll need to install the `torch` and `torchaudio` modules.") - raise Exception(f"Missing module(s): {e}") + if self._has_webrtc_vad: + print(f"Couldn't load torch; using webrtc VAD") + else: + print(f"Exception: {e}") + print("In order to use VAD, you'll need to install the `torch` and `torchaudio` modules.") + raise Exception(f"Missing module(s): {e}") self._vad_samples = 1536 vad_frame_s = self._vad_samples / SAMPLE_RATE @@ -263,19 +267,28 @@ def read_audio_frames(self, desired_frame_count): def _prerun(self): pass + def _silero_vad_analyze(self): + audio_chunk = self.read_audio_frames(self._vad_samples) + audio_int16 = np.frombuffer(audio_chunk, np.int16) + audio_float32 = int2float(audio_int16) + new_confidence = self.model( + torch.from_numpy(audio_float32), 16000).item() + # yeses = int(new_confidence * 20.0) + # nos = 20 - yeses + # out = "!" * yeses + "." * nos + # print(f"!!! confidence: {out}") + speaking = new_confidence > 0.5 + return speaking + def _vad(self): - # CB: Starting silero VAD stuff - # TODO-CB: Probably need to force virtual speaker creation if we're - # going to build this in? - # TODO-CB: pyaudio installation - while not self._stop_threads.is_set(): - audio_chunk = self.read_audio_frames(self._vad_samples) - audio_int16 = np.frombuffer(audio_chunk, np.int16) - audio_float32 = int2float(audio_int16) - new_confidence = self.model( - torch.from_numpy(audio_float32), 16000).item() - speaking = new_confidence > 0.5 + while not self._stop_threads.is_set(): + if hasattr(self, 'model'): # we can use Silero + speaking = self._silero_vad_analyze() + elif self._has_webrtc_vad: + speaking = self._webrtc_vad_analyze() + else: + raise Exception("VAD is running with no VAD service available") if speaking: match self._vad_state: case VADState.QUIET: