-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathencoder.py
81 lines (74 loc) · 3.41 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import transformers
import logging
import util
class Encoder(torch.nn.Module):
def __init__(self, config, use_cache=True):
"""`use_cache` is only used in this file to recompute embeddings.
"""
super(Encoder, self).__init__()
# Figure out what kind of config it is.
# Either is it downloadable from huggingface (and we need an accompanying local file)
# Or we load everything from a local checkpoint
if config["encoder_source"] == "HuggingFace":
try:
self.tokenizer = transformers.AutoTokenizer.from_pretrained(config["encoder_name"]) # replace with local files
except:
logging.info("Did not found tokenizer, using spanbert-cased")
self.tokenizer = transformers.AutoTokenizer.from_pretrained("SpanBERT/spanbert-base-cased")
self.model = transformers.AutoModel.from_pretrained(config["encoder_name"])
else:
# We only support XLMR otherwise
custom_xlmr_dir = config["custom_encoder_dir"]
logging.info(f"Applying custom XLMR encoder: {custom_xlmr_dir}")
self.tokenizer = transformers.XLMRobertaTokenizer.from_pretrained(custom_xlmr_dir + "/vocab.txt")
encoder_config = transformers.XLMRobertaConfig.from_json_file(custom_xlmr_dir + "/config.json")
self.model = transformers.XLMRobertaModel.from_pretrained(
custom_xlmr_dir + "/pytorch_model.bin",
config=encoder_config
)
self.device = config["device"]
# If there is a cached file, we'll want to back off to use the final layer embs there
self.cached_embeddings = None
if use_cache:
try:
self.cached_embeddings = torch.load(config["log_dir"] + "/embeddings.pt")
logging.info(f"Found cached embeddings at {config['log_dir'] + '/embeddings.pt'}. Using them")
except FileNotFoundError:
pass
def forward(self, sentence, doc_seg_id=None, eval_mode=False):
if self.cached_embeddings is not None and doc_seg_id is not None:
if doc_seg_id in self.cached_embeddings:
return self.cached_embeddings[doc_seg_id].to(self.device)
else:
logging.info(f"Did not find {doc_seg_id} cached. Recomputing instead.")
# The Predictor already puts the model in eval() mode, so this flag only used in cache_embeddings()
if eval_mode:
self.model.eval()
model_input = torch.tensor(self.tokenizer.encode(sentence[1:-1]), device=self.device).unsqueeze(0)
outputs = self.model(model_input)
final_layer = outputs[0]
return final_layer
def cache_embeddings(config):
embedder = Encoder(config, use_cache=False)
embedder = embedder.to(config["device"])
cache_file = config["log_dir"] + "/embeddings.pt"
embeddings = {}
train_data = util.load_data(config["train_path"])
eval_data = util.load_data(config["eval_path"])
data_iterator = enumerate(eval_data + train_data)
for doc_num, document in data_iterator:
if doc_num % 200 == 99:
logging.info(f"Cached {doc_num} documents")
segment_iter = util.get_segment_iter(document)
start_idx = 0
for _, (segment, _, seglen) in segment_iter:
final_layer = embedder(segment, eval_mode=True)
doc_seg_id = f"{document['doc_key']}_{start_idx}"
embeddings[doc_seg_id] = final_layer.detach().cpu()
start_idx += seglen
torch.save(embeddings, cache_file)
logging.info(f"Saved {len(embeddings)} embeddings to {cache_file}")
if __name__ == "__main__":
config = util.initialize_from_env()
cache_embeddings(config)