-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFace-Recognition.py
225 lines (176 loc) · 9.83 KB
/
Face-Recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import face_recognition
import cv2
from datetime import datetime, timedelta
import numpy as np
import platform
import pickle
# Our list of known face encodings and a matching list of metadata about each face.
known_face_encodings = []
known_face_metadata = []
def save_known_faces():
with open("known_faces.dat", "wb") as face_data_file:
face_data = [known_face_encodings, known_face_metadata]
pickle.dump(face_data, face_data_file)
print("Known faces backed up to disk.")
def load_known_faces():
global known_face_encodings, known_face_metadata
try:
with open("known_faces.dat", "rb") as face_data_file:
known_face_encodings, known_face_metadata = pickle.load(face_data_file)
print("Known faces loaded from disk.")
except FileNotFoundError as e:
print("No previous face data found - starting with a blank known face list.")
pass
def running_on_jetson_nano():
# To make the same code work on a laptop or on a Jetson Nano, we'll detect when we are running on the Nano
# so that we can access the camera correctly in that case.
# On a normal Intel laptop, platform.machine() will be "x86_64" instead of "aarch64"
return platform.machine() == "aarch64"
def get_jetson_gstreamer_source(capture_width=1280, capture_height=720, display_width=1280, display_height=720, framerate=60, flip_method=0):
"""
Return an OpenCV-compatible video source description that uses gstreamer to capture video from the camera on a Jetson Nano
"""
return (
f'nvarguscamerasrc ! video/x-raw(memory:NVMM), ' +
f'width=(int){capture_width}, height=(int){capture_height}, ' +
f'format=(string)NV12, framerate=(fraction){framerate}/1 ! ' +
f'nvvidconv flip-method={flip_method} ! ' +
f'video/x-raw, width=(int){display_width}, height=(int){display_height}, format=(string)BGRx ! ' +
'videoconvert ! video/x-raw, format=(string)BGR ! appsink'
)
def register_new_face(face_encoding, face_image):
"""
Add a new person to our list of known faces
"""
# Add the face encoding to the list of known faces
known_face_encodings.append(face_encoding)
# Add a matching dictionary entry to our metadata list.
# We can use this to keep track of how many times a person has visited, when we last saw them, etc.
known_face_metadata.append({
"first_seen": datetime.now(),
"first_seen_this_interaction": datetime.now(),
"last_seen": datetime.now(),
"seen_count": 1,
"seen_frames": 1,
"face_image": face_image,
})
def lookup_known_face(face_encoding):
"""
See if this is a face we already have in our face list
"""
metadata = None
# If our known face list is empty, just return nothing since we can't possibly have seen this face.
if len(known_face_encodings) == 0:
return metadata
# Calculate the face distance between the unknown face and every face on in our known face list
# This will return a floating point number between 0.0 and 1.0 for each known face. The smaller the number,
# the more similar that face was to the unknown face.
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
# Get the known face that had the lowest distance (i.e. most similar) from the unknown face.
best_match_index = np.argmin(face_distances)
# If the face with the lowest distance had a distance under 0.6, we consider it a face match.
# 0.6 comes from how the face recognition model was trained. It was trained to make sure pictures
# of the same person always were less than 0.6 away from each other.
# Here, we are loosening the threshold a little bit to 0.65 because it is unlikely that two very similar
# people will come up to the door at the same time.
if face_distances[best_match_index] < 0.65:
# If we have a match, look up the metadata we've saved for it (like the first time we saw it, etc)
metadata = known_face_metadata[best_match_index]
# Update the metadata for the face so we can keep track of how recently we have seen this face.
metadata["last_seen"] = datetime.now()
metadata["seen_frames"] += 1
# We'll also keep a total "seen count" that tracks how many times this person has come to the door.
# But we can say that if we have seen this person within the last 5 minutes, it is still the same
# visit, not a new visit. But if they go away for awhile and come back, that is a new visit.
if datetime.now() - metadata["first_seen_this_interaction"] > timedelta(minutes=5):
metadata["first_seen_this_interaction"] = datetime.now()
metadata["seen_count"] += 1
return metadata
def main_loop():
# Get access to the webcam. The method is different depending on if this is running on a laptop or a Jetson Nano.
if running_on_jetson_nano():
# Accessing the camera with OpenCV on a Jetson Nano requires gstreamer with a custom gstreamer source string
video_capture = cv2.VideoCapture(get_jetson_gstreamer_source(), cv2.CAP_GSTREAMER)
else:
# Accessing the camera with OpenCV on a laptop just requires passing in the number of the webcam (usually 0)
# Note: You can pass in a filename instead if you want to process a video file instead of a live camera stream
video_capture = cv2.VideoCapture(0)
# Track how long since we last saved a copy of our known faces to disk as a backup.
number_of_faces_since_save = 0
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Find all the face locations and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
# Loop through each detected face and see if it is one we have seen before
# If so, we'll give it a label that we'll draw on top of the video.
face_labels = []
for face_location, face_encoding in zip(face_locations, face_encodings):
# See if this face is in our list of known faces.
metadata = lookup_known_face(face_encoding)
# If we found the face, label the face with some useful information.
if metadata is not None:
time_at_door = datetime.now() - metadata['first_seen_this_interaction']
face_label = f"At door {int(time_at_door.total_seconds())}s"
# If this is a brand new face, add it to our list of known faces
else:
face_label = "New visitor!"
# Grab the image of the the face from the current frame of video
top, right, bottom, left = face_location
face_image = small_frame[top:bottom, left:right]
face_image = cv2.resize(face_image, (150, 150))
# Add the new face to our known face data
register_new_face(face_encoding, face_image)
face_labels.append(face_label)
# Draw a box around each face and label each face
for (top, right, bottom, left), face_label in zip(face_locations, face_labels):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
cv2.putText(frame, face_label, (left + 6, bottom - 6), cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255, 255), 1)
# Display recent visitor images
number_of_recent_visitors = 0
for metadata in known_face_metadata:
# If we have seen this person in the last minute, draw their image
if datetime.now() - metadata["last_seen"] < timedelta(seconds=10) and metadata["seen_frames"] > 5:
# Draw the known face image
x_position = number_of_recent_visitors * 150
frame[30:180, x_position:x_position + 150] = metadata["face_image"]
number_of_recent_visitors += 1
# Label the image with how many times they have visited
visits = metadata['seen_count']
visit_label = f"{visits} visits"
if visits == 1:
visit_label = "First visit"
cv2.putText(frame, visit_label, (x_position + 10, 170), cv2.FONT_HERSHEY_DUPLEX, 0.6, (255, 255, 255), 1)
if number_of_recent_visitors > 0:
cv2.putText(frame, "Visitors at Door", (5, 18), cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255, 255), 1)
# Display the final frame of video with boxes drawn around each detected fames
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
save_known_faces()
break
# We need to save our known faces back to disk every so often in case something crashes.
if len(face_locations) > 0 and number_of_faces_since_save > 100:
save_known_faces()
number_of_faces_since_save = 0
else:
number_of_faces_since_save += 1
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
load_known_faces()
main_loop()