-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLoadTempMultiLoRA.py
103 lines (87 loc) · 4.65 KB
/
LoadTempMultiLoRA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import comfy.sd
import comfy.utils
import comfy.clip_vision
import comfy.model_detection
import comfy.model_management
import comfy.model_patcher
import comfy.checkpoint_pickle
import folder_paths
from .utils import download_file, load_torch_bin
class LoadTempMultiLoRA:
CKPT_TYPE = ["auto", "safetensors", "other"]
def __init__(self):
self.loaded_lora = {}
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"clip": ("CLIP", ),
"ckpt_url": ("STRING", {"default": "", "multiline": True, "dynamicPrompts": False}),
"ckpt_type": (LoadTempMultiLoRA.CKPT_TYPE, {"default": "auto"}),
"download_split": ("INT", {"default": 4, "min": 1, "max": 8, "step": 1}),
"strength_model": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step": 0.01}),
},
}
RETURN_TYPES = ("MODEL", "CLIP")
FUNCTION = "load_multi_lora"
CATEGORY = "temporary_loaders"
def load_multi_lora(self, model, clip, ckpt_url, ckpt_type, download_split, strength_model, strength_clip):
model_lora, clip_lora = model, clip
lora_dic = {}
for line in ckpt_url.splitlines():
if line.startswith("#"):
continue
else:
info = line.split(":")
if len(info) < 2:
continue
if line.startswith("file:"):
file_name = line[5:]
model_lora, clip_lora = self.load_lora_file(model_lora, clip_lora, file_name, strength_model, strength_clip, lora_dic)
continue
if line.startswith("http:") or line.startswith("https:"):
url = "{}:{}".format(info[0].strip(), info[1].strip())
model_lora, clip_lora = self.load_lora_url(model_lora, clip_lora, url, ckpt_type, download_split, strength_model, strength_clip, lora_dic)
continue
try:
isFile = info[-2].strip().startswith("file")
url = info[-1].strip() if isFile else "{}:{}".format(info[-2].strip(), info[-1].strip())
strength_m = float(info[0]) if len(info[0]) > 0 else strength_model
strength_c = float(info[1]) if len(info[1]) > 0 else strength_clip
m_type = info[2].strip() if len(info) == 5 and info[2].strip() in LoadTempMultiLoRA.CKPT_TYPE else ckpt_type
except:
raise Exception("Not according to format. The only accepted formats are\r\n{url}\r\n{strength_model}:{strength_clip}:{url}\r\n{strength_model}:{strength_clip}:{ckpt_type}:{url}")
if isFile:
model_lora, clip_lora = self.load_lora_file(model_lora, clip_lora, url, strength_m, strength_c, lora_dic)
else:
model_lora, clip_lora = self.load_lora_url(model_lora, clip_lora, url, m_type, download_split, strength_m, strength_c, lora_dic)
tmp = self.loaded_lora
self.loaded_lora = lora_dic
tmp.clear()
del tmp
return (model_lora, clip_lora)
def load_lora_url(self, model, clip, ckpt_url, ckpt_type, download_split, strength_model, strength_clip, lora_dic):
if strength_model == 0 and strength_clip == 0:
return (model, clip)
lora = self.loaded_lora.get(ckpt_url)
if lora is None:
bin, file_name = download_file(ckpt_url, download_split)
if bin is None:
raise file_name if file_name is not None else Exception("Download failed.")
is_safetensors = file_name.endswith(".safetensors") if ckpt_type =="auto" else ckpt_type == "safetensors"
lora = load_torch_bin(bin, is_safetensors, safe_load=True)
lora_dic[ckpt_url] = lora
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora)
def load_lora_file(self, model, clip, lora_name, strength_model, strength_clip, lora_dic):
if strength_model == 0 and strength_clip == 0:
return (model, clip)
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = self.loaded_lora.get(lora_path)
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
lora_dic[lora_path] = lora
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora)