forked from Intan-Technologies/IntanToNWB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessData.py
299 lines (248 loc) · 12.6 KB
/
ProcessData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import numpy as np
import math
def extract_digital_data(header, raw_data, extracted_data):
""" Extract digital i/o from a 1D raw array to a 2D array with separate channels
Parameters
----------
header : dict
Dict containing previously read header information
raw_data :
Populated 1D array from which channel-specific data must be extracted
extracted_data :
Previously allocated 2D array to which extracted data is written
Returns
-------
None
"""
# Apply channel-specific masks to raw digin data to determine each channel's samples as 1 or 0
for channel in range(header['num_board_dig_in_channels']):
channel_mask = 1 << header['board_dig_in_channels'][channel]['native_order']
extracted_data[channel, :] = np.not_equal(np.bitwise_and(raw_data, channel_mask), 0)
def extract_stim_data(header, data):
""" Extract raw stim data containing multiple fields in a 2D array of uint16 to multiple 2D arrays for each field
Parameters
----------
header : dict
Dict containing previously read header information
data :
Dict containing both previously read 'raw' data, and previously allocated data fields to which extracted data is written
Returns
-------
None
"""
data['compliance_limit_data'] = (np.bitwise_and(data['stim_data_raw'], 32768) >= 1).astype(int) # get 2^15 bit, interpret as True or False
data['charge_recovery_data'] = (np.bitwise_and(data['stim_data_raw'], 16384) >= 1).astype(int) # get 2^14 bit, interpret as True or False
data['amp_settle_data'] = (np.bitwise_and(data['stim_data_raw'], 8192) >= 1).astype(int) # get 2^13 bit, interpret as True or False
data['stim_polarity'] = (1 - (2*(np.bitwise_and(data['stim_data_raw'], 256) >> 8))).astype(int) # get 2^8 bit, interpret as +1 for 0_bit or -1 for 1_bit
curr_amp = np.bitwise_and(data['stim_data_raw'], 255) # get least-significant 8 bits corresponding to the current amplitude
data['stim_data'] = curr_amp * data['stim_polarity'] # multiply current amplitude by the correct sign
def check_for_gaps(t_amplifier, previous_num_gaps, previous_timestamp, chunk_idx):
""" Check for gaps in timestamp data
Parameters
----------
t_amplifier : numpy.ndarray
1D numpy array containing previously read timestamp data
previous_num_gaps : int
After this function call, how many gaps have been found
previous_timestamp : int
Last timestamp of the previous chunk
chunk_idx : int
Index of which chunk is currently being converted (if this is 0, the first chunk has no previous data to consult)
Returns
-------
previous_timestamp : int
Last timestamp of this chunk to pass along to the next chunk for continuity between chunks
num_gaps : int
After this function call, how many gaps have been found
"""
# Check for gaps across this whole chunk
num_gaps = previous_num_gaps + np.sum(np.not_equal(t_amplifier[1:]-t_amplifier[:-1], 1))
# Handle seam case between the previous chunk and this one
if chunk_idx > 0:
if t_amplifier[0] - previous_timestamp != 1:
num_gaps = num_gaps + 1
# Save this chunk's last timestamp for the next iteration
previous_timestamp = t_amplifier[-1]
return previous_timestamp, num_gaps
def scale(header, data, file_format):
""" Scale data arrays from the read integer values to appropriate SI units
Parameters
----------
header : dict
Dict containing previously read header information
data : dict
Dict with fields containing data that needs to be scaled
file_format : str
Which file format this read is following - 'traditional', 'per_signal_type', or 'per_channel'
Returns
-------
None
"""
scale_timestamps(header, data)
scale_data(header, data, file_format)
def scale_timestamps(header, data):
""" Scale all timestamps arrays in data to seconds, with the correct sample rate for each signal type.
Parameters
----------
header : dict
Dict containing previously read header information
data : dict
Dict with fields containing data. In this case, timestamp data like data['t_amplifier'] can be written to
Returns
-------
None
"""
# Divide int timestamp data by the sample rate in Hz to get timestamp data in seconds
t_key = 't_amplifier' if header['filetype'] == 'rhd' else 't'
base_timestamps = data[t_key] / header['sample_rate']
# Amplifiers are sampled at the base sample rate, so all timestamps should be included
data[t_key] = base_timestamps
# Only for .rhd files are multiple timestamp vectors used
if header['filetype'] == 'rhs':
return
# Aux inputs are sampled 4x slower than the base sample rate, so every 4th timestamp should be included
t_aux_range = range(0, len(base_timestamps), 4)
data['t_aux_input'] = base_timestamps[t_aux_range]
# Supply voltages are sampled 60x or 128x slower than the base sample rate, so only one timestamp per data block should be included
t_supply_range = range(0, len(base_timestamps), header['num_samples_per_data_block'])
data['t_supply_voltage'] = base_timestamps[t_supply_range]
# Analog inputs are sampled at the base sample rate, so all timestamps should be included
data['t_board_adc'] = base_timestamps
# Digital inputs/outputs are sampled at the base sample rate, so all timestamps should be included
data['t_dig'] = base_timestamps
# Temp sensors are sampled at the same rate as supply voltages
data['t_temp_sensor'] = data['t_supply_voltage']
def scale_data(header, data, file_format):
""" Scale data arrays from the read integer values to appropriate units
Parameters
----------
header: dict
Dict containing previously read header information
data : dict
Dict with fields containing data that must be scaled
file_format : str
Which file format this read is following - 'traditional', 'per_signal_type', or 'per_channel'
Returns
-------
None
"""
# Scale amplifier data to Volts
if file_format == 'traditional':
data['amplifier_data'] = 1.95e-7 * (data['amplifier_data'].astype('float32') - 32768)
else:
data['amplifier_data'] = 1.95e-7 * data['amplifier_data'].astype('float32')
if header['lowpass_present']:
data['lowpass_data'] = 1.95e-7 * data['lowpass_data'].astype('float32')
if header['highpass_present']:
data['highpass_data'] = 1.95e-7 * data['highpass_data'].astype('float32')
if header['filetype'] == 'rhd':
# Scale aux input data to Volts
data['aux_input_data'] = 37.4e-6 * data['aux_input_data']
# Scale supply voltage data to Volts
data['supply_voltage_data'] = 74.8e-6 * data['supply_voltage_data']
# Scale temp sensor data to deg C
data['temp_sensor_data'] = data['temp_sensor_data'] / 100
# Scale analog input data to Volts
if header['board_mode'] == 1:
data['board_adc_data'] = 152.59e-6 * (data['board_adc_data'].astype(np.int32) - 32768)
elif header['board_mode'] == 13:
data['board_adc_data'] = 312.5e-6 * (data['board_adc_data'].astype(np.int32) - 32768)
else:
data['board_adc_data'] = 50.354e-6 * data['board_adc_data']
else:
# Scale stim data to Amps
data['stim_data'] = header['stim_step_size'] * data['stim_data']
# If present, scale DC amp data to Volts
if header['dc_amplifier_data_saved']:
data['dc_amplifier_data'] = -0.01923 * (data['dc_amplifier_data'].astype(np.int32) - 512)
data['board_adc_data'] = 312.5e-6 * (data['board_adc_data'].astype(np.int32) - 32768) # units = volts
data['board_dac_data'] = 312.5e-6 * (data['board_dac_data'].astype(np.int32) - 32768) # units = volts
def process_wideband(header, chunk_idx, data, previous_samples):
""" Process wideband data prior to final write, applying a notch filter if appropriate
Parameters
----------
header : dict
Dict containing previously read header information
chunk_idx : int
Index of which chunk is currently being converted (if this is 0, the first chunk has no previous data to consult)
data : dict
Dict with fields containing data that must be processed
previous_samples : list
List of last samples of previous chunk, used for allowing notch filter to be continuous across chunks
Returns
-------
wideband_filter_string :
String describing how the wideband data has been filtered, used for writing to NWB later
previous_samples : list
List of last samples of this chunk, used for allowing notch filter to be continuous across chunks
"""
wideband_filter_string = 'Wideband data'
# If the software notch filter was selected during recording, apply the same notch filter to amplifier data here.
# But don't do this for v3.0+ files (from Intan RHX software) because RHX saves notch-filtered data.
if header['notch_filter_frequency'] > 0 and header['version']['major'] < 3:
for channel in range(header['num_amplifier_channels']):
continue_previous = False if chunk_idx == 0 else True
data['amplifier_data'][channel,:] = notch_filter(data['amplifier_data'][channel,:],
header['sample_rate'],
header['notch_filter_frequency'],
10,
continue_previous,
previous_samples[channel * 2],
previous_samples[channel * 2 + 1]
)
previous_samples[channel * 2] = data['amplifier_data'][channel, -2]
previous_samples[channel * 2 + 1] = data['amplifier_data'][channel, -1]
wideband_filter_string = 'Wideband data, filtered through a ' + str(header['notch_filter_frequency']) + ' Hz IIR notch filter'
return wideband_filter_string, previous_samples
def notch_filter(in_array, f_sample, f_notch, bandwidth, continue_previous, second_to_last, last):
""" Implement a notch filter (e.g., for 50 or 60 Hz) on input vector.
Example: If neural data was sampled at 30 kSamples/sec and you wish to implement a 60 Hz notch filter:
out_array = notch_filter(in_array, 3000, 60, 10, false, None, None)
Parameters
----------
in_array : numpy.ndarray
1D array containing unfiltered data that should have a notch filter applied to it
f_sample : float
Sample rate of data (Hz or Samples/sec)
f_notch : float or int
Filter notch frequency (Hz)
bandwidth : float or int
Notch 3-dB bandwidth (Hz). A bandwidth of 10 Hz is recommended for 50 or 60 Hz notch filters;
narrower bandwidths lead to poor time-domain properties with an extended ringing response to transient disturbances.
continue_previous : bool
Whether this filter is continuous with earlier data, which should be stored in previous_samples
second_to_last : float
Second to last sample used for continuous filtering if continue_previous is True
last : float
Last sample used for continuous filtering if continue_previous is True
Returns
-------
out_array : numpy.ndarray
1D array containing notch-filtered data
"""
t_step = 1.0/f_sample
f_c = f_notch*t_step
L = len(in_array)
# Calculate IIR filter parameters
d = math.exp(-2.0*math.pi*(bandwidth/2.0)*t_step)
b = (1.0 + d*d) * math.cos(2.0*math.pi*f_c)
a0 = 1.0
a1 = -b
a2 = d*d
a = (1.0 + d*d)/2.0
b0 = 1.0
b1 = -2.0 * math.cos(2.0*math.pi*f_c)
b2 = 1.0
out_array = np.zeros(len(in_array))
if continue_previous:
out_array[0] = second_to_last
out_array[1] = last
else:
out_array[0] = in_array[0]
out_array[1] = in_array[1]
# (If filtering a continuous data stream, change out_array[0:1] to the
# previous final two values of out_array.)
# Run filter
for i in range(2,L):
out_array[i] = (a*b2*in_array[i-2] + a*b1*in_array[i-1] + a*b0*in_array[i] - a2*out_array[i-2] - a1*out_array[i-1])/a0
return out_array