forked from Digilent/openscope-mz
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAWG.c
753 lines (613 loc) · 26.5 KB
/
AWG.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/************************************************************************/
/* */
/* AWG.C */
/* */
/* Calibration file for the DC Outs */
/* It also contains the reference voltage identification */
/* */
/************************************************************************/
/* Author: Keith Vogel */
/* Copyright 2016, Digilent Inc. */
/************************************************************************/
/************************************************************************/
/* Revision History: */
/* */
/* 3/3/2016 (KeithV): Created */
/************************************************************************/
#include <OpenScope.h>
#if(SWDACSIZE > HWDACSIZE)
#error calibrated AWG/DAC must be less than or equal to the hardware DAC
#endif
STATE AWGCalibrate(HINSTR hAWG) {
AWG * pAWG = (AWG *) hAWG;
int32_t uVHW;
// make sure this is our function
if (!(pAWG->comhdr.activeFunc == AWGFnCal || pAWG->comhdr.activeFunc == SMFnNone)) {
return (Waiting);
}
switch (pAWG->comhdr.state)
{
case Idle:
pAWG->comhdr.activeFunc = AWGFnCal;
pAWG->pOCoffset->OCxRS = 300;
*(pAWG->pLATx) = DACDATA((HWDACSIZE - 1) / 2); // set the DAC value (511)
pAWG->comhdr.tStart = SYSGetMilliSecond();
pAWG->comhdr.state = AWGWaitPWMLow;
break;
case AWGWaitPWMLow:
if (SYSGetMilliSecond() - pAWG->comhdr.tStart >= PWM_SETTLING_TIME)
{
pAWG->comhdr.state = AWGReadPWMLow;
}
break;
case AWGReadPWMLow:
if(FBAWGorDCuV(pAWG->channelFB, &pAWG->t2) == Idle)
{
pAWG->pOCoffset->OCxRS = 50;
pAWG->comhdr.tStart = SYSGetMilliSecond();
pAWG->comhdr.state = AWGWaitPWMHigh;
}
break;
case AWGWaitPWMHigh:
if (SYSGetMilliSecond() - pAWG->comhdr.tStart >= PWM_SETTLING_TIME)
{
pAWG->comhdr.state = AWGReadPWMHigh;
}
break;
case AWGReadPWMHigh:
if(FBAWGorDCuV(pAWG->channelFB, &pAWG->t3) == Idle)
{
*((int32_t *) &(pAWG->A)) = ((pAWG->t3 - pAWG->t2) + 125) / 250; // ~11995
// might as well start centering now
pAWG->pOCoffset->OCxRS = PWMIDEALCENTER;
*(pAWG->pLATx) = DACDATA(0); // set the DAC value
pAWG->comhdr.tStart = SYSGetMilliSecond();
pAWG->comhdr.state = AWGWaitDACLow;
}
break;
case AWGWaitDACLow:
if (SYSGetMilliSecond() - pAWG->comhdr.tStart >= PWM_SETTLING_TIME)
{
pAWG->comhdr.state = AWGReadDACLow;
}
break;
case AWGReadDACLow:
if(FBAWGorDCuV(pAWG->channelFB, &pAWG->t2) == Idle)
{
*(pAWG->pLATx) = DACDATA(HWDACSIZE - 1); // set the DAC value
pAWG->comhdr.tStart = SYSGetMilliSecond();
pAWG->comhdr.state = AWGWaitDACHigh;
}
break;
case AWGWaitDACHigh:
if (SYSGetMilliSecond() - pAWG->comhdr.tStart >= AWG_SETTLING_TIME) {
pAWG->comhdr.state = AWGReadDACHigh;
}
break;
case AWGReadDACHigh:
if(FBAWGorDCuV(pAWG->channelFB, &pAWG->t3) == Idle)
{
int32_t uVPWMHigh = (pAWG->t3 - pAWG->t2 + 1) / 2;
int32_t pwmCenter = 0;
// if we need to move the offest down, that is, it is too high now
// is > want
if(pAWG->t3 > uVPWMHigh)
{
// to move down, the PWM must be higher, the opamp is inverting
pwmCenter = PWMIDEALCENTER + ((pAWG->t3 - uVPWMHigh + pAWG->A/2) / pAWG->A);
}
// if we need to move the offset up
else
{
// we need to lower the PWM value
pwmCenter = PWMIDEALCENTER - ((uVPWMHigh - pAWG->t3 + pAWG->A/2) / pAWG->A);
}
pAWG->pOCoffset->OCxRS = pwmCenter; // set this to pulse duration
// now that we found the center PWM
// we can calculate B
// AWGoffset = B - A(PWM)
// AWGoffset == 0 at PWMCenter
// B = A(PWMCenter) ~ 2099125
*((int32_t *) &(pAWG->B)) = pAWG->A * pwmCenter;
pAWG->t1 = 0; // get ready to read the DAC
*(pAWG->pLATx) = DACDATA(0);
pAWG->comhdr.tStart = SYSGetMilliSecond();
pAWG->comhdr.state = AWGWait;
}
break;
case AWGWait:
if (SYSGetMilliSecond() - pAWG->comhdr.tStart >= PWM_SETTLING_TIME)
{
// we can jump directly to the read as
// we waited the longer PWM settling time.
pAWG->comhdr.state = AWGReadHW;
}
break;
case AWGWaitHW:
if (SYSGetMilliSecond() - pAWG->comhdr.tStart >= AWG_SETTLING_TIME)
{
pAWG->comhdr.state = AWGReadHW;
}
case AWGReadHW:
if(FBAWGorDCuV(pAWG->channelFB, &uVHW) == Idle)
{
// read the channel data
// must be no greater than sum 16 as we only have 16 bits, 12bit converter X 16 for 12+4=16 bits.
pAWG->mVFB[(pAWG->t1)++] = (int16_t) (uVHW >= 0 ? ((uVHW + 500) / 1000) : -((-uVHW + 500) / 1000)); // DO NOT GO GREATER THAN 16 SUMMING
if (pAWG->t1 < HWDACSIZE)
{
// set up for the next read
*(pAWG->pLATx) = DACDATA(pAWG->t1);
pAWG->comhdr.tStart = SYSGetMilliSecond();
pAWG->comhdr.state = AWGWaitHW;
} else {
// done, get out.
pAWG->t1 = 0;
pAWG->comhdr.state = AWGSort;
}
}
break;
case AWGSort:
{
int i;
uint32_t cBubSortPass = 0;
bool fStillSorting = true;
uint16_t dacMap[HWDACSIZE];
int16_t dacValue[HWDACSIZE];
// put things in local variable for faster / easier processing
memcpy(dacValue, pAWG->mVFB, sizeof(dacValue));
// init calibration array
for (i = 0; i < HWDACSIZE; i++) {
dacMap[i] = i;
}
// bubble sort calibration array
while (fStillSorting) {
fStillSorting = false;
for (i = 0; i < (HWDACSIZE - 1); i++) {
if (dacValue[i] > dacValue[i + 1]) {
uint16_t dacMapT = dacMap[i];
int16_t dacValueT = dacValue[i];
dacValue[i] = dacValue[i+1];
dacValue[i+1] = dacValueT;
dacMap[i] = dacMap[i+1];
dacMap[i+1] = dacMapT;
fStillSorting = true;
}
}
cBubSortPass++;
}
// Save the map
memcpy(pAWG->dacMap, dacMap, sizeof (pAWG->dacMap));
memcpy(pAWG->mVFB, dacValue, sizeof (pAWG->mVFB));
pAWG->comhdr.state = AWGEncode;
}
break;
// encode the map for direct PortH usage
case AWGEncode:
{
int i;
for (i = 0; i < HWDACSIZE; i++) {
pAWG->dacMap[i] = DACDATA(pAWG->dacMap[i]);
}
// we have calibrated
pAWG->comhdr.idhdr.cfg = CFGCAL;
}
// fall thru to default
default:
pAWG->comhdr.activeFunc = SMFnNone;
pAWG->comhdr.state = Idle;
break;
}
return (pAWG->comhdr.state);
}
STATE AWGSetOffsetVoltage(HINSTR hAWG, int32_t mvDCOffset) {
AWG * pAWG = (AWG *) hAWG;
// make sure this is our function
if (!(pAWG->comhdr.activeFunc == AWGFnSetOffset || pAWG->comhdr.activeFunc == SMFnNone)) {
return (Waiting);
}
switch (pAWG->comhdr.state) {
case Idle:
pAWG->comhdr.activeFunc = AWGFnSetOffset;
pAWG->pOCoffset->OCxRS = AWGMV2PWM(pAWG, mvDCOffset);
pAWG->comhdr.tStart = SYSGetMilliSecond();
pAWG->comhdr.state = AWGWait;
break;
case AWGWait:
if (SYSGetMilliSecond() - pAWG->comhdr.tStart >= PWM_SETTLING_TIME) {
pAWG->comhdr.activeFunc = SMFnNone;
pAWG->comhdr.state = Idle;
}
break;
default:
pAWG->comhdr.activeFunc = SMFnNone;
pAWG->comhdr.state = Idle;
break;
}
return (pAWG->comhdr.state);
}
STATE AWGStop(HINSTR hAWG)
{
AWG * pAWG = (AWG *) hAWG;
if(pAWG->comhdr.activeFunc != SMFnNone)
{
return (Waiting);
}
else if(DCH7DSA == KVA_2_PA(pAWG->pLATx) && pAWG->pTMR->TxCON.ON == 1)
{
// stop the trigger to the DMA
pAWG->pTMR->TxCON.ON = 0; // turn on the timer
// turning off the DMA channel does not reset the point SRC/DST pointers
pAWG->pDMA->DCHxCON.CHEN = 0; // disable this DMA channel
}
return(Idle);
}
STATE AWGRun(HINSTR hAWG)
{
AWG * pAWG = (AWG *) hAWG;
if(pAWG->comhdr.activeFunc != SMFnNone)
{
return (Waiting);
}
else if(pAWG->cbSrc == 0)
{
return(AWGWaveformNotSet);
}
else if(pAWG->pTMR->TxCON.ON != 1)
{
// DMA setup, this is shared with the Logic Analyzer, so we have to set it up each time
pAWG->pDMA->DCHxCON.CHEN = 0; // make sure the DMA is disabled
pAWG->pDMA->DCHxDSA = KVA_2_PA(pAWG->pLATx); // Latch H address for destination
pAWG->pDMA->DCHxDSIZ = 2; // destination size 2 byte
pAWG->pDMA->DCHxSSA = pAWG->addrPhySrc; // physical address of the source buffer
pAWG->pDMA->DCHxSSIZ = pAWG->cbSrc; // how many bytes (not items) of the source buffer
// timer setup, we know the timer is disabled.
pAWG->pTMR->TxCON.TCKPS = AWGPRESCALER; // 1:1 prescalar
pAWG->pTMR->PRx = pAWG->PRXOnRun; // what is the period
pAWG->pTMR->TMRx = 0; // init timer value to 0
// enable the DMA and the timer
pAWG->pDMA->DCHxCON.CHEN = 1; // enable this DMA channel
pAWG->pTMR->TxCON.ON = 1; // turn on the timer
}
return(Idle);
}
int16_t AWGmVGetActualOffsets(HINSTR hAWG, int16_t mvOffset, int16_t * pTableOffset)
{
int16_t pwmOffset;
if(mvOffset > DACMVLIMIT) pwmOffset = AWGRequestedmvOffsetToActual(hAWG, DACMVLIMIT);
else if(mvOffset < -DACMVLIMIT) pwmOffset = AWGRequestedmvOffsetToActual(hAWG, -DACMVLIMIT);
else pwmOffset = AWGRequestedmvOffsetToActual(hAWG, mvOffset);
*pTableOffset = mvOffset - pwmOffset;
if(*pTableOffset < -DACMVLIMIT || DACMVLIMIT < *pTableOffset)
{
*pTableOffset = 0;
return(0);
}
return(pwmOffset);
}
STATE AWGSetCustomWaveform(HINSTR hAWG, int16_t rgWaveform[], uint32_t cWaveformEntries, int16_t mvDCOffset, uint32_t cSamplesPerSec) {
AWG * pAWG = (AWG *) hAWG;
uint32_t myState = Idle;
if (pAWG->comhdr.activeFunc == AWGFnSetCustomWaveform || pAWG->comhdr.activeFunc == SMFnNone)
{
myState = pAWG->comhdr.state;
}
else if(pAWG->comhdr.cNest == 0 || pAWG->comhdr.activeFunc != AWGFnSetOffset)
{
return (Waiting);
}
else
{
myState = AWGWaitOffset;
}
switch (myState) {
case Idle:
{
uint32_t i = 0;
int32_t mvMax = -AWGMAXP2P;
int32_t mvMin = AWGMAXP2P;
int16_t mvTblOffset = 0;
if(pAWG->pTMR->TxCON.ON)
{
return(AWGCurrentlyRunning);
}
else if(cSamplesPerSec > AWGMAXSPS)
{
return(AWGExceedsMaxSamplPerSec);
}
for (i = 0; i < cWaveformEntries; i++)
{
int32_t mvEntry = rgWaveform[i] + mvDCOffset;
if(mvEntry > mvMax) mvMax = mvEntry;
if(mvEntry < mvMin) mvMin = mvEntry;
}
if((mvMax - mvMin) > AWGMAXP2P || mvMin < -AWGMAXP2P || AWGMAXP2P < mvMax)
{
return(AWGValueOutOfRange);
}
// get and actual offset we can use
pAWG->mvDCOffset = AWGmVGetActualOffsets(hAWG, (int16_t) ((mvMax + mvMin) / 2), &mvTblOffset);
// fill in the table buffer with adjust values to our actual offset
for (i = 0; i < cWaveformEntries; i++) rgWaveform[i] += mvDCOffset - pAWG->mvDCOffset;
pAWG->comhdr.state = AWGMakeDMABuffer;
}
break;
case AWGMakeDMABuffer:
{
int16_t * dacValue = pAWG->mVFB;
int32_t i = 0;
for (i = 0; i < cWaveformEntries; i++)
{
int32_t mvE = rgWaveform[i];
int32_t j = HWDACSIZE/2;
int32_t iTop = HWDACSIZE-2;
int32_t iBot = 0;
if(mvE <= dacValue[0])
{
mvE = dacValue[0];
j = 0;
}
if(mvE >= dacValue[HWDACSIZE-1])
{
mvE = dacValue[HWDACSIZE-1];
j = HWDACSIZE-2;
}
while(!(dacValue[j] <= mvE && mvE <= dacValue[j+1]))
{
if(mvE > dacValue[j+1]) iBot = j;
if(mvE < dacValue[j]) iTop = j;
j = (iTop + iBot) / 2;
ASSERT(j < HWDACSIZE-1);
}
// if the upper value is closer than the lower value
if((dacValue[j+1] - mvE) < (mvE - dacValue[j])) j++;
// copy over the code to drive this value
rgWaveform[i] = pAWG->dacMap[j];
}
// now set things up to run with the DMA
pAWG->addrPhySrc = KVA_2_PA(rgAWGBuff); // start address
pAWG->cbSrc = cWaveformEntries * sizeof (rgAWGBuff[0]); // source size our data buffer
pAWG->PRXOnRun = ((AWGPBCLK + (cSamplesPerSec/2)) / cSamplesPerSec) - 1;
(pAWG->comhdr.cNest)++;
pAWG->comhdr.state = Idle;
pAWG->comhdr.activeFunc = AWGFnSetOffset;
return(AWGWaitOffset);
}
break;
case AWGWaitOffset:
{
STATE nestedState = AWGSetOffsetVoltage(hAWG, pAWG->mvDCOffset);
if(IsStateAnError(nestedState))
{
(pAWG->comhdr.cNest)--;
pAWG->comhdr.activeFunc = SMFnNone;
pAWG->comhdr.state = Idle;
return(nestedState);
}
else if(nestedState == Idle)
{
(pAWG->comhdr.cNest)--;
pAWG->comhdr.activeFunc = SMFnNone;
pAWG->comhdr.state = Idle;
}
}
break;
default:
pAWG->comhdr.activeFunc = SMFnNone;
pAWG->comhdr.state = Idle;
break;
}
return (pAWG->comhdr.state);
}
// take freq in mHz, returns in mHz
// Highest freq we can support is 1MHz, or 1,000,000,000 mHz (still an int32_t)
// Highest buffer size AWGMAXBUF, which must be less than 64K (still an int32_t))
// Highest AWGMAXSPS we support is 10MS/s (still an int32_t)
// so while we take uint32_t as inputs, you can cast from an int32_t just fine.
// if we did 1S/s and had a size of 25,000 we could support a waveform as slow as 1/25,000 Hz or 40 uHz
uint32_t AWGCalculateBuffAndSps(uint32_t reqFreqmHz, uint32_t * pcBuff, uint32_t * pSps)
{
// calculate the timer and buffer size
if(reqFreqmHz == 0) // just a DC Value
{
*pSps = AWGMAXSPS;
*pcBuff = 1;
return(0);
}
// PB = (buff)(tmr)(freq)
// you can't have a bigger buffer because we can't push data out faster
// with a buffer size of 25,000 and sample rate of 10,000,000
// we can use slower sample rate at 400 Hz
else if((*pcBuff = (uint32_t) ((((uint64_t) AWGMAXSPS) * 1000ull + (reqFreqmHz/2)) / reqFreqmHz)) <= ((uint32_t) AWGMAXBUF))
{
// the cutoff freq for here is 400 Hz
*pSps = AWGMAXSPS; // samples per sec
// *pcBuff = (uint32_t) ((((uint64_t) AWGMAXSPS) * 1000ull + (reqFreqmHz/2)) / reqFreqmHz); // size of buffer
}
// PB = (buff)(tmr)(freq)
// use the maximum buffer size to use the fastest clock
// this is from 400Hz down to 40uHz
else
{
const uint64_t pbx1000 = AWGPBCLK * 1000ull;
uint32_t tmr = (uint32_t) (((pbx1000 / AWGMAXBUF) + (reqFreqmHz/2)) / reqFreqmHz);
// if we have a tmr overflow, put it at the max
if(tmr > 65536) tmr = 65536;
*pSps = (AWGPBCLK + (tmr/2)) / tmr;
if(*pSps > AWGMAXSPS) *pSps = AWGMAXSPS;
*pcBuff = (uint32_t) ((((uint64_t) *pSps) * 1000ll + (reqFreqmHz/2)) / reqFreqmHz);
if(*pcBuff > AWGDMABUF) *pcBuff = AWGDMABUF;
}
// sps = freq * cbuff
// freq = sps/cbuff
// return in mHz
return((uint32_t) ((((int64_t) (*pSps) * 1000ll) + (*pcBuff)/2) / (*pcBuff)));
}
STATE AWGSetWaveform(HINSTR hAWG, WAVEFORM waveform , uint32_t freqmHz, int32_t mvP2P, int32_t mvDCOffset)
{
AWG * pAWG = (AWG *) hAWG;
uint32_t myState = Idle;
if (pAWG->comhdr.activeFunc == AWGFnSetWaveform || pAWG->comhdr.activeFunc == SMFnNone)
{
myState = pAWG->comhdr.state;
}
else if(pAWG->comhdr.cNest == 0 || (pAWG->comhdr.activeFunc != AWGFnSetCustomWaveform && pAWG->comhdr.activeFunc != AWGFnSetOffset))
{
return (Waiting);
}
else
{
myState = AWGWaitCustomWaveform;
}
switch (myState) {
case Idle:
if(pAWG->pTMR->TxCON.ON) return(AWGCurrentlyRunning);
else if( mvP2P > AWGMAXP2P || mvP2P < 0 ||
(mvDCOffset - mvP2P/2) < -AWGMAXP2P || AWGMAXP2P < (mvP2P/2 + mvDCOffset) ||
freqmHz > (AWGMAXFREQ * 1000)
) return(AWGValueOutOfRange);
AWGCalculateBuffAndSps(freqmHz, (uint32_t *) &pAWG->t2, (uint32_t *) &pAWG->t1);
switch(waveform)
{
case waveDC:
pAWG->t1 = AWGMAXSPS;
pAWG->t2 = 1;
pAWG->comhdr.state = AWGDC;
break;
case waveSine:
pAWG->comhdr.state = AWGSine;
break;
case waveSquare:
pAWG->comhdr.state = AWGSquare;
break;
case waveTriangle:
pAWG->comhdr.state = AWGTriangle;
break;
case waveSawtooth:
pAWG->comhdr.state = AWGSawtooth;
break;
default:
return(AWGWaveformNotSupported);
}
pAWG->comhdr.activeFunc = AWGFnSetWaveform;
break;
case AWGDC:
{
rgAWGBuff[0] = 0;
(pAWG->comhdr.cNest)++;
pAWG->comhdr.state = Idle;
pAWG->comhdr.activeFunc = AWGFnSetCustomWaveform;
return(AWGWaitCustomWaveform);
}
break;
case AWGSquare:
{
int32_t i;
int16_t halfMag = ((int16_t) mvP2P) / 2;
int16_t mhalfMag = -halfMag;
for (i = 0; i < ((pAWG->t2)/2); i++) {
rgAWGBuff[i] = (uint16_t) mhalfMag;
}
for (; i < pAWG->t2; i++) {
rgAWGBuff[i] = (uint16_t) halfMag;
}
(pAWG->comhdr.cNest)++;
pAWG->comhdr.state = Idle;
pAWG->comhdr.activeFunc = AWGFnSetCustomWaveform;
return(AWGWaitCustomWaveform);
}
break;
case AWGSawtooth:
{
int32_t i;
double dblBuffSize = ((double) pAWG->t2);
double dblMagnitude = (double) mvP2P;
double dblHalfMagnitude = dblMagnitude / 2;
for (i = 0; i < pAWG->t2; i++) {
rgAWGBuff[i] = (uint16_t) ((int16_t) ((dblMagnitude * (((double) i) / dblBuffSize)) - dblHalfMagnitude));
}
(pAWG->comhdr.cNest)++;
pAWG->comhdr.state = Idle;
pAWG->comhdr.activeFunc = AWGFnSetCustomWaveform;
return(AWGWaitCustomWaveform);
}
break;
case AWGTriangle:
{
int32_t i;
int32_t j;
int32_t buffDown = (pAWG->t2 / 2); // truncates odd numbers low
int32_t buffUp = (pAWG->t2 - buffDown); // may be one longer than buffDown
double dblBuffSizeUp = ((double) buffUp);
double dblBuffSizeDown = ((double) buffDown);
double dblMagnitude = (double) mvP2P;
double dblHalfMagnitude = dblMagnitude / 2;
// create up slope
for (i = 0; i < buffUp; i++) {
rgAWGBuff[i] = (uint16_t) ((int16_t) ((dblMagnitude * (((double) i) / dblBuffSizeUp)) - dblHalfMagnitude));
}
// create down slope
for (j = 0; i < pAWG->t2; i++, j++) {
rgAWGBuff[i] = (uint16_t) ((int16_t) ((dblMagnitude * ((dblBuffSizeDown - ((double) j)) / dblBuffSizeDown)) - dblHalfMagnitude));
}
(pAWG->comhdr.cNest)++;
pAWG->comhdr.state = Idle;
pAWG->comhdr.activeFunc = AWGFnSetCustomWaveform;
return(AWGWaitCustomWaveform);
}
break;
case AWGSine:
{
int32_t i;
double dblBuffSize = ((double) pAWG->t2);
double dblMagnitude = ((double) mvP2P) / 2;
for (i = 0; i < pAWG->t2; i++) {
rgAWGBuff[i] = (uint16_t) ((int16_t) (dblMagnitude * sin((((double) i) / dblBuffSize) * M_TWOPI)));
}
(pAWG->comhdr.cNest)++;
pAWG->comhdr.state = Idle;
pAWG->comhdr.activeFunc = AWGFnSetCustomWaveform;
return(AWGWaitCustomWaveform);
}
break;
case AWGBode:
{
uint32_t j;
int32_t i;
double dblBuffSize = ((double) pAWG->t2);
double dblMagnitude = (4 * (double) mvP2P) / M_TWOPI;
// clear the buffer
memset(rgAWGBuff, 0, pAWG->t2 * sizeof(rgAWGBuff[0]));
for(j = 1; (j * freqmHz) < 2000000000; j += 2)
{
double dblMagnitudeT = dblMagnitude / j;
for (i = 0; i < pAWG->t2; i++)
{
rgAWGBuff[i] += (uint16_t) ((int16_t) (dblMagnitudeT * sin((((double) (j * i)) / dblBuffSize) * M_TWOPI)));
}
}
(pAWG->comhdr.cNest)++;
pAWG->comhdr.state = Idle;
pAWG->comhdr.activeFunc = AWGFnSetCustomWaveform;
return(AWGWaitCustomWaveform);
}
break;
case AWGWaitCustomWaveform:
{
STATE nestedState = AWGSetCustomWaveform(hAWG, (int16_t *) rgAWGBuff, (uint32_t) pAWG->t2, mvDCOffset, pAWG->t1);
if(nestedState == Idle || IsStateAnError(nestedState))
{
(pAWG->comhdr.cNest)--;
pAWG->comhdr.activeFunc = SMFnNone;
pAWG->comhdr.state = Idle;
}
return(nestedState);
}
break;
default:
pAWG->comhdr.activeFunc = SMFnNone;
pAWG->comhdr.state = Idle;
break;
}
return (pAWG->comhdr.state);
}