-
Notifications
You must be signed in to change notification settings - Fork 55
/
acquire-gps-l1.py
executable file
·111 lines (86 loc) · 3.48 KB
/
acquire-gps-l1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python
import optparse
import numpy as np
import scipy.signal
import scipy.fftpack as fft
import gnsstools.gps.ca as ca
import gnsstools.nco as nco
import gnsstools.io as io
import gnsstools.util as util
#
# Acquisition search
#
def search(x,prn,doppler_search,ms):
fs = 4096000.0
n = 4096 # 1 ms coherent integration
doppler_min, doppler_max, doppler_incr = doppler_search
incr = float(ca.code_length)/n
c = ca.code(prn,0,0,incr,n) # obtain samples of the C/A code
c = fft.fft(c)
m_metric,m_code,m_doppler = 0,0,0
for doppler in np.arange(doppler_min,doppler_max,doppler_incr): # doppler bins
q = np.zeros(n)
w = nco.nco(-doppler/fs,0,n)
for block in range(ms): # incoherent sums
b = x[(block*n):((block+1)*n)]
b = b*w
r = fft.ifft(c*np.conj(fft.fft(b)))
q = q + np.absolute(r)
idx = np.argmax(q)
metric = q[idx]/np.mean(q)
if metric>m_metric:
m_metric = metric
m_code = ca.code_length*(float(idx)/n)
m_doppler = doppler
return m_metric,m_code,m_doppler
#
# main program
#
parser = optparse.OptionParser(usage="""acquire-gps-l1.py [options] input_filename sample_rate carrier_offset
Acquire GPS L1 signals
Examples:
Acquire all GPS PRNs using standard input with sample rate 69.984 MHz and carrier offset -9.334875 MHz:
acquire-gps-l1.py /dev/stdin 69984000 -9334875
Acquire all GPS and WAAS PRNs with a custom doppler search grid and integration time of 20 ms:
acquire-gps-l1.py --prn 1-32,131,133,135,138 --doppler-search -6000,6000,500 --time 20 /dev/stdin 69984000 -9334875
Acquire all GPS and QZSS PRNs from raw sample file "recording.iq":
acquire-gps-l1.py --prn 1-32,193,194,195,199 recording.iq 69984000 -9334875
Arguments:
input_filename input data file, i/q interleaved, 8 bit signed
sample_rate sampling rate in Hz
carrier_offset offset to L1 carrier in Hz (positive or negative)""")
parser.disable_interspersed_args()
parser.add_option("--prn", default="1-32", help="PRNs to search, e.g. 1,3,7-14,31 (default %default)")
parser.add_option("--doppler-search", metavar="MIN,MAX,INCR", default="-7000,7000,200", help="Doppler search grid: min,max,increment (default %default)")
parser.add_option("--time", type="int", default=80, help="integration time in milliseconds (default %default)")
(options, args) = parser.parse_args()
filename = args[0]
fs = float(args[1])
coffset = float(args[2])
prns = util.parse_list_ranges(options.prn)
doppler_search = util.parse_list_floats(options.doppler_search)
ms = options.time
# read first portion of file
ms_pad = ms + 5
n = int(fs*0.001*ms_pad)
fp = open(filename,"rb")
x = io.get_samples_complex(fp,n)
# wipe off nominal offset from channel center to GPS L1 carrier
nco.mix(x,-coffset/fs,0)
# resample to 4.096 MHz
fsr = 4096000.0/fs
h = scipy.signal.firwin(161,1.5e6/(fs/2),window='hann')
x = scipy.signal.filtfilt(h,[1],x)
xr = np.interp((1/fsr)*np.arange(ms_pad*4096),np.arange(len(x)),np.real(x))
xi = np.interp((1/fsr)*np.arange(ms_pad*4096),np.arange(len(x)),np.imag(x))
x = xr+(1j)*xi
# iterate (in parallel) over PRNs of interest
def worker(p):
x,prn = p
metric,code,doppler = search(x,prn,doppler_search,ms)
return 'prn %3d doppler % 7.1f metric % 5.2f code_offset %6.1f' % (prn,doppler,metric,code)
import multiprocessing as mp
cpus = mp.cpu_count()
results = mp.Pool(cpus).map(worker, map(lambda prn: (x,prn),prns))
for r in results:
print(r)