-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkguard.c
1218 lines (1074 loc) · 32.5 KB
/
kguard.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* kGuard Copyright (C) 2010 Columbia University
*
* This software was developed by Vasileios P. Kemerlis <[email protected]>
* at Columbia University, New York, NY, USA, in November 2010.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <bsd/stdlib.h>
#include "kguard.h"
/*
* TODO:
* - Add support for GCC v4.7 (or later).
* - Add something useful in `plugin_info' help (pinfo.help).
*/
/* function declarations */
unsigned int branchprot_instrument(void);
/* assert GPL compatibility */
int __attribute__ ((visibility("default"))) plugin_is_GPL_compatible;
/* plugin information structure */
struct plugin_info __attribute__ ((visibility("default")))
pinfo = {
.version = VER,
.help = NULL
};
/* descriptor for the new pass provided by the plugin */
struct rtl_opt_pass __attribute__ ((visibility("default")))
pass_branchprot = {{
RTL_PASS,
NAME,
NULL,
branchprot_instrument,
NULL,
NULL,
0,
TV_NONE,
PROP_rtl,
0, 0, 0, 0
}};
/* plugin versioning structure */
static struct plugin_gcc_version
pver = {
.basever = "4.5.0",
.datestamp = "",
.devphase = "",
.revision = "",
.configuration_arguments = ""
};
/* kernel starting address */
static int kaddr = KADDR_DFL;
/* stub; run-time violation handler (address or symbol) */
static const char *stub = STUB_DFL;
/* NOP sled size; upper bound */
static size_t nop = NOP_DFL;
/* retprot flag */
static size_t retprot = RETPROT_DFL;
/* compatibility mode (needed for GCC 4.5.x series) */
static int compat = 0;
#ifdef DEBUG
/* log filename */
static char *log = NULL;
/* logfile */
static FILE *flog = NULL;
/*
* start the auditing process
*
* Open the logfile in append mode.
*/
static void
openlog(void)
{
/* check if a filename for logging has been specified */
if (log != NULL) {
/* open the logfile in appending mode */
if (likely((flog = fopen(log, "a")) != NULL))
/* success */
/* dump information regarding the translation unit */
(void)fprintf(flog, "[/F]:%s\n",
IDENTIFIER_POINTER(DECL_NAME(cfun->decl)));
else
/* failed */
(void)fprintf(stderr,
"%s: failed while trying to open %s (%s)\n",
NAME, log, xstrerror(errno));
}
}
/*
* terminate the auditing process
*
* Close the logfile.
*/
static void
closelog(void)
{
/* check if logging has been enabled */
if (flog != NULL) {
/* dump information regarding the translation unit */
(void)fprintf(flog, "[F/]:%s\n",
IDENTIFIER_POINTER(DECL_NAME(cfun->decl)));
/* cleanup */
(void)fclose(flog);
}
}
/*
* perform the actual logging
*
* Print the RTL expression of the inspected instruction; in case of
* instrumented instructions print an additional discriminator (i.e.,
* `M' for branches via an unsafe memory location, and `SM`/`R` for
* branches via safe memory locations or registers).
*
* insn: the instruction to log
* (e.g., a call_insn or jump_insn expression)
* type: the type of the instrumentation
* (e.g., no instrumentation, safe, unsafe)
*/
static void
commitlog(const rtx insn, const size_t type)
{
/* check if logging has been enabled */
if (flog != NULL) {
/* differentiate based on the instrumentation type */
switch (type) {
case SAFE_RET_INSTR:
/*
* discriminator for instrumented instructions;
* branch via a safe memory location (return)
*/
(void)fprintf(flog, "[SM-ret] ");
break;
case UNSAFE_INSTR:
/*
* discriminator for instrumented instructions;
* branch via an unsafe memory location
*/
(void)fprintf(flog, "[M] ");
break;
case SAFE_M_INSTR:
/*
* discriminator for instrumented instructions;
* branch via safe a memory location
*/
(void)fprintf(flog, "[SM] ");
break;
case SAFE_R_INSTR:
/*
* discriminator for instrumented instructions;
* branch via register
*/
(void)fprintf(flog, "[R] ");
break;
case NO_INSTR:
default:
/* default; make the compiler happy */
break;
}
/* dump the instruction */
print_rtl_single(flog, insn);
}
}
#endif /* DEBUG */
/*
* check if an expression contains an indirect call
* (e.g., as a sub-expression) in a DFS-like manner
*
* NOTE: It assumes that we can have only up to one
* call sub-expression (i.e., call_insn specific).
*
* expr: the expression to check
*
* returns: the indirect call sub-expression
* (if expr contains one), NULL otherwise
*/
static const rtx
contains_indirect_call(const rtx expr)
{
size_t i; /* iterator */
rtx res = NULL; /* return value */
/* quick reject; the expression is irrelevant */
if (expr == NULL || GET_RTX_CLASS(GET_CODE(expr)) != RTX_EXTRA)
return NULL;
/* a call expression found; check if it is an indirect call */
if (unlikely(GET_CODE(expr) == CALL &&
GET_RTX_CLASS(GET_CODE(XEXP(XEXP(expr, 0), 0)))
!= RTX_CONST_OBJ))
/* indirect call found; return it (ptr) */
return expr;
/* iterate all the sub-expressions */
for (i = 0; i < GET_RTX_LENGTH(GET_CODE(expr)); i++) {
/* extract the sub-expression and inspect it */
res = contains_indirect_call(XEXP(expr, i));
/*
* found an indirect call sub-expression;
* no need to check the rest
*/
if (unlikely(res != NULL))
break;
}
/* return the result */
return res;
}
/*
* check if an expression contains an indirect jump or
* return (e.g., as a sub-expression) in a DFS-like manner
*
* NOTE: It assumes that we can have only up to one
* jump sub-expression (i.e., jump_insn specific).
*
* expr: the expression to check
*
* returns: the indirect jump sub-expression
* (if expr contains one), NULL otherwise
*/
static const rtx
contains_indirect_jump(const rtx expr)
{
int i; /* iterator */
rtx res = NULL; /* return value */
/* quick reject; the expression is irrelevant */
if (expr == NULL ||
GET_CODE(expr) == USE ||
GET_CODE(expr) == CLOBBER ||
GET_CODE(expr) == ASM_OPERANDS)
return NULL;
/* a return/eh_return expression found */
if ((retprot == 1) &&
((GET_CODE(expr) == EH_RETURN) ||
#if GCCPLUGIN_VERSION >= 4007
/* GCC 4.7.x series have more than one `return' expression */
(GET_CODE(expr) == SIMPLE_RETURN) ||
#endif
(GET_CODE(expr) == RETURN)))
/* return it (ptr) */
return expr;
/* a set expression found; check if it is an indirect jump */
if (GET_CODE(expr) == SET &&
(MEM_P(XEXP(expr, 1)) || REG_P(XEXP(expr, 1))))
/* indirect jump found; return it (ptr) */
return expr;
/* expression vector */
if (GET_CODE(expr) == PARALLEL) {
/* iterate all the sub-expressions */
for (i = 0; i < XVECLEN(expr, 0); i++) {
/* extract the sub-expression and inspect it */
res = contains_indirect_jump(XVECEXP(expr, 0, i));
/*
* found an indirect jump sub-expression;
* no need to check the rest
*/
if (unlikely(res != NULL))
break;
}
}
/* return the result */
return res;
}
/*
* instrument an indirect branch;
* The branch target should be stored into:
* i. a register.
* ii. a "safe" memory location (i.e., see safe_ea() for more
* information regarding what we consider to be a safe
* memory location).
*
* Split the BB that contains the call_insn or jump_insn into two new BBs
* (the split is done just before the branch), and insert one more BB in
* between that contains the confinement code.
*
* branch_insn: the call_insn/jump_insn expression
* branch: the call/jump expression
* type: the type of the instruction (i.e., call_insn or jump_insn)
*/
static void
instr_branch_safe(const rtx branch_insn, const rtx branch, const size_t type)
{
size_t i; /* iterator */
basic_block bbranch_bb; /* basic block that contains the code
before the branch */
rtx branch_prev; /* expression before the branch */
rtx flags_reg; /* condition code register */
rtx btarget; /* expression for the branch target */
rtx ksaddr; /* kernel starting address */
rtx nop_pattern; /* NOP pattern */
rtx cmp; /* compare expression */
rtx jmp; /* jump expression */
rtx branch_lbl; /* label expression */
rtx vsaddr; /* violation handler */
/* machine condition code mode */
enum machine_mode cmpmode;
/* split the basic block before the branch expression */
branch_prev = PREV_INSN(branch_insn);
bbranch_bb = BLOCK_FOR_INSN(branch_prev);
split_block(bbranch_bb, branch_prev);
/*
* get a new label for the branch block
* (i.e., before the branch instruction in the new block)
*/
branch_lbl = emit_label_before(gen_label_rtx(), branch_insn);
/* rtx expression that computes the branch target of the branch */
if (type == CALL_INSN)
/* call_insn expression */
btarget = copy_rtx(XEXP(XEXP(branch, 0), 0));
else if (type == JUMP_INSN)
/* jump_insn expression */
btarget = copy_rtx(XEXP(branch, 1));
else
/* return/eh_return expression */
btarget = gen_rtx_MEM(MMODE, gen_rtx_REG(MMODE,
STACK_POINTER_REGNUM));
/* constant rtx expression with the base address of the kernel */
ksaddr = GEN_INT(kaddr);
/* rtx expression with the appropriate condition code mode */
#if linux && __amd64__
cmpmode = SELECT_CC_MODE(LT, btarget, ksaddr);
#elif linux && __i386__
cmpmode = SELECT_CC_MODE(GEU, btarget, ksaddr);
#else
#error "[!] Unsupported platform" /* unknown platform */
#endif
/* rtx expression for the condition register (flags) */
flags_reg = gen_rtx_REG(cmpmode, FLAGS_REG);
/* generate the random NOP sled */
nop_pattern = branch_prev;
for (i = 0; i <= arc4random_uniform(nop + 1); i++)
nop_pattern = emit_insn_after(gen_nop(), nop_pattern);
/* generate a compare instruction */
cmp = emit_insn_after(gen_rtx_SET(VOIDmode, flags_reg,
gen_rtx_COMPARE(cmpmode, btarget, ksaddr)),
nop_pattern);
/* generate a jump instruction */
jmp = emit_jump_insn_after(gen_rtx_SET(VOIDmode,
/* rtx expression for the PC */
pc_rtx,
gen_rtx_IF_THEN_ELSE(VOIDmode,
#if linux && __amd64__
gen_rtx_LT(VOIDmode, flags_reg, const0_rtx),
#elif linux && __i386__
gen_rtx_GEU(VOIDmode, flags_reg, const0_rtx),
#else
#error "[!] Unsupported platform" /* unknown platform */
#endif
/*
* goto the branch instruction if target branch
* address >= kernel base
*/
gen_rtx_LABEL_REF(VOIDmode, branch_lbl),
pc_rtx)),
cmp);
/* link the jump instruction with the branch label */
JUMP_LABEL(jmp) = branch_lbl;
LABEL_NUSES(branch_lbl)++;
/* run-time violation handler; stub */
vsaddr = gen_rtx_SYMBOL_REF(Pmode, stub);
SYMBOL_REF_FLAGS(vsaddr) |=
(SYMBOL_FLAG_FUNCTION | SYMBOL_FLAG_EXTERNAL);
/* generate the "fix" code */
(void)emit_insn_after(gen_rtx_SET(VOIDmode,
copy_rtx(btarget),
vsaddr),
jmp);
}
/*
* generate a "pop" expression
*
* Store the top of the stack into a destination operand.
*
* dst: the destination operand
*
* returns: the "pop" expression
*/
static const rtx
gen_rtx_pop(const rtx dst)
{
/* we need different handling based on the GCC version */
if (compat)
/* really ugly; clopied from gen_popsi1() :) */
return gen_rtx_PARALLEL(VOIDmode,
gen_rtvec(2,
gen_rtx_SET(VOIDmode,
dst,
gen_rtx_MEM(MMODE,
gen_rtx_REG(MMODE,
STACK_POINTER_REGNUM))),
gen_rtx_SET(VOIDmode,
gen_rtx_REG(MMODE,
STACK_POINTER_REGNUM),
gen_rtx_PLUS(MMODE,
gen_rtx_REG(MMODE,
STACK_POINTER_REGNUM),
GEN_INT(__SIZEOF_POINTER__)))));
else
return gen_rtx_SET(VOIDmode,
dst,
gen_rtx_MEM(MMODE, gen_rtx_POST_INC(Pmode,
gen_rtx_REG(MMODE,
STACK_POINTER_REGNUM))));
}
/*
* instrument an unsafe indirect branch;
* the EA of the branch target is stored into an "unsafe" memory location
* (i.e., a memory location referenced via the general purpose register (GPR),
* or via some GPR registers along with some constant arithmetic operations).
*
* Split the BB that contains the branch instruction into two new BBs (the
* split is done just before the branch), and insert one more BB in between that
* contain the confinement code. The difference of instr_branch_unsafe() and
* instr_branch_safe() is that the former confines also the location that the
* EA of the branch target is stored.
*
* branch_insn: the call_insn/jump_insn expression
* branch: the call/jump expression
* ea: expression that computes the location of the EA
* of the branch target
* type: the type of the instruction (i.e., call_insn or jump_insn)
*/
static void
instr_branch_unsafe(const rtx branch_insn,
const rtx branch,
const rtx ea,
const size_t type)
{
size_t i; /* iterator */
basic_block bbranch_bb; /* basic block that contains the code
before the branch */
rtx branch_prev; /* expression before the branch */
rtx flags_reg; /* condition code register */
rtx flags_reg_ea; /* condition code register; EA check */
rtx btarget; /* expression for the branch target */
rtx btarget_ea; /* expression for the memory location that
holds the branch target */
rtx ksaddr; /* kernel starting address */
rtx ksaddr_ea; /* kernel starting address; EA check */
rtx nop_pattern; /* NOP pattern */
rtx cmp; /* compare expression */
rtx cmp_ea; /* compare expression; EA check */
rtx jmp; /* jump expression */
rtx jmp_ea; /* jump expression; EA check */
rtx branch_lbl; /* label expression */
rtx branch_chk_lbl; /* label expression */
rtx vsaddr; /* violation handler */
rtx push; /* push expression */
rtx pop; /* pop expression */
rtx pop_fix; /* pop expression */
rtx sreg; /* spilled register */
/* machine condition code modes */
enum machine_mode cmpmode, cmpmode_ea;
/* split the basic block before the branch expression */
branch_prev = PREV_INSN(branch_insn);
bbranch_bb = BLOCK_FOR_INSN(branch_prev);
split_block(bbranch_bb, branch_prev);
/*
* get a new label for the branch block
* (i.e., before the branch instruction in the new block)
*/
branch_lbl = emit_label_before(gen_label_rtx(), branch_insn);
/*
* get a new label for the branch check block
* (i.e., before branch_lbl in the new block)
*/
branch_chk_lbl = emit_label_before(gen_label_rtx(), branch_lbl);
/* rtx expression that computes the branch target of the branch */
if (type == CALL_INSN)
/* call_insn expression */
btarget = copy_rtx(XEXP(XEXP(branch, 0), 0));
else
/* jump_insn expression */
btarget = copy_rtx(XEXP(branch, 1));
/*
* rtx expression that computes the register
* that holds the branch target (i.e., the EA);
*/
btarget_ea = gen_rtx_REG(MMODE, S_REG);
/* constant rtx expression with the base address of the kernel */
ksaddr = GEN_INT(kaddr);
/*
* constant rtx expression with the base address of the kernel;
* EA check
*/
ksaddr_ea = GEN_INT(kaddr);
#if linux && __amd64__
/* rtx expression with the appropriate condition code mode */
cmpmode = SELECT_CC_MODE(LT, btarget, ksaddr);
/* rtx expression with the appropriate condition code mode; EA check */
cmpmode_ea = SELECT_CC_MODE(LT, btarget_ea, ksaddr_ea);
#elif linux && __i386__
/* rtx expression with the appropriate condition code mode */
cmpmode = SELECT_CC_MODE(GEU, btarget, ksaddr);
/* rtx expression with the appropriate condition code mode; EA check */
cmpmode_ea = SELECT_CC_MODE(GEU, btarget_ea, ksaddr_ea);
#else
#error "[!] Unsupported platform" /* unknown platform */
#endif
/* rtx expression for the condition register (flags) */
flags_reg = gen_rtx_REG(cmpmode, FLAGS_REG);
/* rtx expression for the condition register (flags); EA check */
flags_reg_ea = gen_rtx_REG(cmpmode_ea, FLAGS_REG);
/* run-time violation handler; stub */
vsaddr = gen_rtx_SYMBOL_REF(Pmode, stub);
SYMBOL_REF_FLAGS(vsaddr) |=
(SYMBOL_FLAG_FUNCTION | SYMBOL_FLAG_EXTERNAL);
/* generate the random NOP sled */
nop_pattern = branch_prev;
for (i = 0; i <= arc4random_uniform(nop + 1); i++)
nop_pattern = emit_insn_after(gen_nop(), nop_pattern);
/* spill a register for holding the EA of the branch target */
push = emit_insn_after(gen_rtx_SET(VOIDmode,
gen_rtx_MEM(Pmode,
gen_rtx_PRE_DEC(Pmode, stack_pointer_rtx)),
copy_rtx(btarget_ea)),
nop_pattern);
/* compute the EA of the branch target into the spilled register */
sreg = emit_insn_after(gen_rtx_SET(VOIDmode,
copy_rtx(btarget_ea),
copy_rtx(ea)),
push);
/* generate a compare instruction; check the memory location first */
cmp_ea = emit_insn_after(gen_rtx_SET(VOIDmode, flags_reg_ea,
gen_rtx_COMPARE(cmpmode_ea,
btarget_ea,
ksaddr_ea)),
sreg);
/* generate a jump instruction */
jmp_ea = emit_jump_insn_after(gen_rtx_SET(VOIDmode,
/* rtx expression for the PC */
pc_rtx,
gen_rtx_IF_THEN_ELSE(VOIDmode,
#if linux && __amd64__
gen_rtx_LT(VOIDmode, flags_reg_ea, const0_rtx),
#elif linux && __i386__
gen_rtx_GEU(VOIDmode, flags_reg_ea, const0_rtx),
#else
#error "[!] Unsupported platform" /* unknown platform */
#endif
/*
* goto branch_chk_lbl if the memory location
* that stores the branch address >= kernel base
*/
gen_rtx_LABEL_REF(VOIDmode, branch_chk_lbl),
pc_rtx)),
cmp_ea);
/* link the jump instruction with the violation label */
JUMP_LABEL(jmp_ea) = branch_chk_lbl;
LABEL_NUSES(branch_chk_lbl)++;
/*
* generate a "pop" instruction; remove the EA of
* the branch target from the stack
*/
pop = emit_insn_after(gen_rtx_pop(copy_rtx(btarget_ea)),
jmp_ea);
/* generate a "call" instruction; invoke the violation handler */
(void)emit_call_insn_after(gen_rtx_CALL(VOIDmode,
gen_rtx_MEM(QImode, copy_rtx(vsaddr)),
const0_rtx),
pop);
/*
* generate a "pop" instruction; remove the EA of
* the branch target from the stack
*/
pop_fix = emit_insn_after(gen_rtx_pop(copy_rtx(btarget_ea)),
branch_chk_lbl);
/* generate a compare instruction */
cmp = emit_insn_after(gen_rtx_SET(VOIDmode, flags_reg,
gen_rtx_COMPARE(cmpmode, btarget, ksaddr)),
pop_fix);
/* generate a jump instruction */
jmp = emit_jump_insn_after(gen_rtx_SET(VOIDmode,
/* rtx expression for the PC */
pc_rtx,
gen_rtx_IF_THEN_ELSE(VOIDmode,
#if linux && __amd64__
gen_rtx_LT(VOIDmode, flags_reg, const0_rtx),
#elif linux && __i386__
gen_rtx_GEU(VOIDmode, flags_reg, const0_rtx),
#else
#error "[!] Unsupported platform" /* unknown platform */
#endif
/*
* goto the branch instruction if target branch
* address >= kernel base
*/
gen_rtx_LABEL_REF(VOIDmode, branch_lbl),
pc_rtx)),
cmp);
/* link the jump instruction with the branch label */
JUMP_LABEL(jmp) = branch_lbl;
LABEL_NUSES(branch_lbl)++;
/* generate the "fix" code */
(void)emit_insn_after(gen_rtx_SET(VOIDmode,
copy_rtx(btarget),
vsaddr),
jmp);
}
/*
* check if the target address of an indirect branch is *stored*
* into a "safe" memory location:
* i. a fixed memory location (e.g., obtained via a symbol name).
* ii. a memory location that is obtained via a fixed memory address
* (see case i. above), along with some constant arithmetic
* operation (i.e., +/- a constant number of bytes).
*
* ea: the effective address to analyze
*
* returns: SUCC if the ea is stored into one of the
* aforementioned locations, FAIL otherwise
*/
static int
safe_ea(const rtx ea)
{
/* cases i, ii */
if (GET_RTX_CLASS(GET_CODE(ea)) == RTX_CONST_OBJ)
return SUCC;
else
return FAIL;
}
/*
* jump_insn expression handler
*
* Inspect the sub-expressions of a jump_insn instruction
* (i.e., the PATTERN) and search for indirect jumps or returns;
* whenever one is found, call the appropriate instrumentation function.
*
* jump_insn: the jump_insn expression
* htab: the hash table with the instrumented instructions
*/
static void
handle_jump_insn(const rtx jump_insn, const htab_t htab)
{
rtx jump; /* indirect jump sub-expression (ptr) */
rtx taddr; /* sub-expression with the branch target; address */
/* check if we have already handled this jump_insn instruction */
if (unlikely(htab_find(htab, jump_insn) != NULL))
/* already handled; return */
return;
/* check all the sub-expressions of jump_insn for indirect jumps */
if (likely((jump = contains_indirect_jump(PATTERN(jump_insn))) == NULL))
{
#ifdef DEBUG /* auditing */
commitlog(jump_insn, NO_INSTR);
#endif /* DEBUG */
/* no indirect jumps found; return */
return;
}
/* jump vs return/eh_return */
if ((GET_CODE(jump) == EH_RETURN) ||
#if GCCPLUGIN_VERSION >= 4007
/* GCC 4.7.x series have more than one `return' expression */
(GET_CODE(jump) == SIMPLE_RETURN) ||
#endif
(GET_CODE(jump) == RETURN)) {
/* return/eh_return */
instr_branch_safe(jump_insn, NULL, GET_CODE(jump));
#ifdef DEBUG /* auditing */
commitlog(jump_insn, SAFE_RET_INSTR);
#endif /* DEBUG */
}
else { /* indirect jump */
/* extract the branch target */
taddr = XEXP(jump, 1);
/*
* indirect jump via a register (e.g., jmp *%eax; ea = %eax),
* or via a safe memory location; (see the comments of safe_ea()
* for more info about safe EA locations)
*/
if (unlikely(REG_P(taddr))) {
instr_branch_safe(jump_insn, jump, JUMP_INSN);
#ifdef DEBUG /* auditing */
commitlog(jump_insn, SAFE_R_INSTR);
#endif /* DEBUG */
}
else if (unlikely(safe_ea(XEXP(taddr, 0)) == SUCC)) {
instr_branch_safe(jump_insn, jump, JUMP_INSN);
#ifdef DEBUG /* auditing */
commitlog(jump_insn, SAFE_M_INSTR);
#endif /* DEBUG */
}
else {
/*
* indirect jump via an unsafe memory location
* (e.g., jmp *(%eax)); ea = (%eax)
*/
instr_branch_unsafe(jump_insn, jump,
XEXP(taddr, 0), JUMP_INSN);
#ifdef DEBUG /* auditing */
commitlog(jump_insn, UNSAFE_INSTR);
#endif /* DEBUG */
}
}
/* insert the instruction (jump_insn) into the handled set */
*htab_find_slot(htab, jump_insn, INSERT) = jump_insn;
}
/*
* call_insn expression handler
*
* Inspect the sub-expressions of a call_insn instruction
* (i.e., the PATTERN) and search for indirect calls; whenever
* one is found, call the appropriate instrumentation function.
*
* call_insn: the call_insn expression
* htab: the hash table with the instrumented instructions
*/
static void
handle_call_insn(const rtx call_insn, const htab_t htab)
{
rtx call; /* indirect call sub-expression (ptr) */
rtx taddr; /* sub-expression with the branch target; address */
/* check if we have already handled this call_insn instruction */
if (unlikely(htab_find(htab, call_insn) != NULL))
/* already handled; return */
return;
/* check all the sub-expressions of call_insn for indirect calls */
if (likely((call = contains_indirect_call(PATTERN(call_insn))) == NULL))
{
#ifdef DEBUG /* auditing */
commitlog(call_insn, NO_INSTR);
#endif /* DEBUG */
/* no indirect calls found; return */
return;
}
/* extract the branch target */
taddr = XEXP(XEXP(call, 0), 0);
/*
* indirect call via a register (e.g., call *%eax; ea = %eax),
* or via a safe memory location; (see the comments of safe_ea()
* for more info about safe EA locations)
*/
if (unlikely(REG_P(taddr))) {
instr_branch_safe(call_insn, call, CALL_INSN);
#ifdef DEBUG /* auditing */
commitlog(call_insn, SAFE_R_INSTR);
#endif /* DEBUG */
}
else if (unlikely(safe_ea(XEXP(taddr, 0)) == SUCC)) {
instr_branch_safe(call_insn, call, CALL_INSN);
#ifdef DEBUG /* auditing */
commitlog(call_insn, SAFE_M_INSTR);
#endif /* DEBUG */
}
else {
/*
* indirect call via an unsafe memory location
* (e.g., call *(%eax)); ea = (%eax)
*/
instr_branch_unsafe(call_insn, call, XEXP(taddr, 0), CALL_INSN);
#ifdef DEBUG /* auditing */
commitlog(call_insn, UNSAFE_INSTR);
#endif /* DEBUG */
}
/* insert the instruction (call_insn) into the handled set */
*htab_find_slot(htab, call_insn, INSERT) = call_insn;
}
/*
* branch-prot pass
* (callback; invoked for every translation unit)
*
* Confine all indirect branches via instrumentation;
* computed branches are *sandboxed* by disallowing
* targets outside the kernel code segment.
*
* NOTE: It may terminate the compilation process
* if it runs out of memory.
*
* returns: SUCC on success, FAIL on error
*/
unsigned int __attribute__ ((visibility("default")))
branchprot_instrument(void)
{
/* iterators */
basic_block it_bb; /* basic block (BB) iterator */
rtx it_insn; /* instruction (INSN) iterator */
/* hash table with the instructions to be instrumented */
htab_t htab_insn;
/*
* allocate a new hash table; it may call exit(3) if xcalloc()
* runs out of memory. The hash table implementation is the
* typical GCC htab_t
*
* NOTE: There is no need to check the return value for NULL,
* xcalloc() will handle this
*/
htab_insn = htab_create_alloc(HTAB_SZ_DFL,
htab_hash_pointer, /* ptr to INSN */
htab_eq_pointer,
NULL,
xcalloc, /* xcalloc allocator */
free); /* std free(3) */
#ifdef DEBUG /* auditing */
openlog();
#endif /* DEBUG */
/* traverse all the basic blocks of the translation unit */
FOR_EACH_BB(it_bb)
/* traverse all the instructions in the basic block */
FOR_BB_INSNS(it_bb, it_insn)
/* invoke the appropriate handler */
switch (GET_CODE(it_insn)) {
/* call_insn instructions */
case CALL_INSN:
handle_call_insn(it_insn, htab_insn);
break;
/* jump_insn instructions */
case JUMP_INSN:
handle_jump_insn(it_insn, htab_insn);
break;
default:
/* make the compiler happy */
break;
}
#ifdef DEBUG /* auditing */
closelog();
#endif /* DEBUG */
/* cleanup; deallocate the hash table */
free(htab_insn);
/* return with success */
return SUCC;
}
/*
* argument parsing
*
* Parse the plugin arguments and set the corresponding
* variables (i.e., `stub', `nop', `log', `retprot').
*
* plugin_info: information regarding the plugin; provided by GCC
*
* returns: SUCC on success, FAIL on error
*/
static int
parse_args(const struct plugin_name_args *plugin_info)
{
/* iterator */
int i;
/* argument length */
size_t len;
/* parse the plugin arguments (if any) */
for (i = 0; i < plugin_info->argc; i++) {
/* where is my getopt-like API? */
/* get the length of the argument */
len = strlen(plugin_info->argv[i].key);
/* stub */
if (strncmp(plugin_info->argv[i].key,
STUB_STR,
strlen(STUB_STR)) == 0 &&
len == strlen(STUB_STR)) {
if ((plugin_info->argv[i].value != NULL) &&
(strlen(plugin_info->argv[i].value) != 0))
/* stub can be an address or a symbol name */
stub = plugin_info->argv[i].value;
else {
/* missing stub */
(void)fprintf(stderr,
"%s: missing option for argument %s\n",
NAME,
plugin_info->argv[i].key);
/* fail */
return FAIL;
}
}
/* nop */
else if (strncmp(plugin_info->argv[i].key,
NOP_STR,
strlen(NOP_STR)) == 0 &&
len == strlen(NOP_STR)) {
if ((plugin_info->argv[i].value != NULL) &&
(strlen(plugin_info->argv[i].value) != 0))
/* parse the decimal option */
nop = strtoul(plugin_info->argv[i].value,
NULL,
BASE10);
else {
/* missing nop */
(void)fprintf(stderr,
"%s: missing option for argument %s\n",
NAME,
plugin_info->argv[i].key);