Releases: poets-ai/elegy
Releases · poets-ai/elegy
0.6.0
Merged pull requests:
- More Steps: adds additional *_step methods #163 (cgarciae)
- Better error message on elegy.States attribute access miss #162 (alexander-g)
- Improve Docs: adds more docs + an example using pmap to distribute trianing #156 (cgarciae)
- WGAN-GP low-level API example #157 (alexander-g)
0.5.0
This version simplifies parts of the low-level API in spirit of what was introduced in 0.4.0
to provide a more homogeneous and simpler experience.
Merged pull requests:
0.4.1
0.4.0
Implemented enhancements:
- [Feature Request] Monitoring learning rates #124
Merged pull requests:
- Update Getting Started + README #152 (cgarciae)
- Pretrained ResNet fix after #139 #151 (alexander-g)
- Dataset: better default batch_fn and custom batch_fn #148 (alexander-g)
- Label Smoothing for Binary Crossentropy #146 (alexander-g)
- Add adapter for handling torch dataloaders #145 (charlielito)
- Feature/tf dataset adapter #144 (charlielito)
- [*.md,*.py,*.sh] Fix typos #142 (SamuelMarks)
- verbose=4 #140 (alexander-g)
- Framework Agnostic API: Introduces a new low-level API, removes the dependency between Model and Module, adds support for Flax and Haiku, simplifies hooks. #139 (cgarciae)
- DataLoader Optimizations #137 (alexander-g)
- Autodownload pretrained ResNet #136 (alexander-g)
- Add learning rate logging #135 (cgarciae)
- Adds gitpod support to be able to develop elegy on the cloud #134 (cgarciae)
- Make Models Pickleable Again #133 (alexander-g)
- SCCE fix for bug in Jax<0.2.7 #130 (alexander-g)
- table progress #127 (alexander-g)
0.3.0
Implemented enhancements:
Fixed bugs:
- [Bug] Accuracy from Model.evaluate() is inconsistent with manually computed accuracy #109
- Exceptions in "Getting Started" colab notebook #104
Closed issues:
- l2_normalize #102
- Need some help for contributing new losses. #93
- Document Sum #62
- Binary Accuracy Metric #58
- Automate generation of API Reference folder structure #19
- Implement Model.summary #3
Merged pull requests:
sparse\_categorical\_crossentropy
should check bounds #123 (alexander-g)- float sample_weight for precision/recall metrics #122 (alexander-g)
- Added Huber loss #121 (abhinavsp0730)
- ResNet Docs + CIFAR10 Example #119 (alexander-g)
- Dataset & DataLoader #118 (alexander-g)
- fix/docs #116 (cgarciae)
- Better save + load #114 (cgarciae)
- Examples Cleanup #113 (alexander-g)
- merge resnet into master #111 (cgarciae)
- Fix metrics error #110 (cgarciae)
- Fix colab notebook getting started #105 (charlielito)
- Added Cosine Similarity loss. #103 (abhinavsp0730)
- small change to trigger build #101 (charlielito)
- New metrics #100 (anvelezec)
- Update CONTRIBUTING.md #97 (haruiz)
- Enhance docs #96 (charlielito)
- Loss Mean Squared Logarithmic error. #95 (abhinavsp0730)
- Documentation improvements #94 (chjort)
- Module v3 #92 (cgarciae)
- Documentation fixes of module-system.md #91 (chjort)
- binary precision and recall metrics #86 (anvelezec)