forked from quantumiracle/Popular-RL-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 2
/
rdpg.py
289 lines (234 loc) · 11.7 KB
/
rdpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
'''
Recurrent Deterministic Policy Gradient (DDPG with LSTM network)
Update with batch of episodes for each time, so requires each episode has the same length.
'''
import math
import random
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from torch.distributions import Categorical
from collections import namedtuple
from common.buffers import *
from common.value_networks import *
from common.policy_networks import *
from common.utils import *
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import display
from reacher import Reacher
import argparse
from gym import spaces
GPU = True
device_idx = 0
if GPU:
device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print(device)
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
class RDPG():
def __init__(self, replay_buffer, state_space, action_space, hidden_dim):
self.replay_buffer = replay_buffer
self.hidden_dim = hidden_dim
# single-branch network structure as in 'Memory-based control with recurrent neural networks'
self.qnet = QNetworkLSTM2(state_space, action_space, hidden_dim).to(device)
self.target_qnet = QNetworkLSTM2(state_space, action_space, hidden_dim).to(device)
self.policy_net = DPG_PolicyNetworkLSTM2(state_space, action_space, hidden_dim).to(device)
self.target_policy_net = DPG_PolicyNetworkLSTM2(state_space, action_space, hidden_dim).to(device)
# two-branch network structure as in 'Sim-to-Real Transfer of Robotic Control with Dynamics Randomization'
# self.qnet = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
# self.target_qnet = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
# self.policy_net = DPG_PolicyNetworkLSTM(state_space, action_space, hidden_dim).to(device)
# self.target_policy_net = DPG_PolicyNetworkLSTM(state_space, action_space, hidden_dim).to(device)
print('Q network: ', self.qnet)
print('Policy network: ', self.policy_net)
for target_param, param in zip(self.target_qnet.parameters(), self.qnet.parameters()):
target_param.data.copy_(param.data)
self.q_criterion = nn.MSELoss()
q_lr=1e-3
policy_lr = 1e-3
self.update_cnt=0
self.q_optimizer = optim.Adam(self.qnet.parameters(), lr=q_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
def target_soft_update(self, net, target_net, soft_tau):
# Soft update the target net
for target_param, param in zip(target_net.parameters(), net.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return target_net
def update(self, batch_size, reward_scale=10.0, gamma=0.99, soft_tau=1e-2, policy_up_itr=10, target_update_delay=3, warmup=True):
self.update_cnt+=1
hidden_in, hidden_out, state, action, last_action, reward, next_state, done = self.replay_buffer.sample(batch_size)
# print('sample:', state, action, reward, done)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
last_action = torch.FloatTensor(last_action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(-1).to(device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(-1).to(device)
# use hidden states stored in the memory for initialization, hidden_in for current, hidden_out for target
predict_q, _ = self.qnet(state, action, last_action, hidden_in) # for q
new_action, _ = self.policy_net.evaluate(state, last_action, hidden_in) # for policy
new_next_action, _ = self.target_policy_net.evaluate(next_state, action, hidden_out) # for q
predict_target_q, _ = self.target_qnet(next_state, new_next_action, action, hidden_out) # for q
predict_new_q, _ = self.qnet(state, new_action, last_action, hidden_in) # for policy. as optimizers are separated, no detach for q_h_in is also fine
target_q = reward+(1-done)*gamma*predict_target_q # for q
# reward = reward_scale * (reward - reward.mean(dim=0)) /reward.std(dim=0) # normalize with batch mean and std
q_loss = self.q_criterion(predict_q, target_q.detach())
policy_loss = -torch.mean(predict_new_q)
# train qnet
self.q_optimizer.zero_grad()
q_loss.backward(retain_graph=True) # no need for retain_graph here actually
self.q_optimizer.step()
# train policy_net
self.policy_optimizer.zero_grad()
policy_loss.backward(retain_graph=True)
self.policy_optimizer.step()
# update the target_qnet
if self.update_cnt%target_update_delay==0:
self.target_qnet=self.target_soft_update(self.qnet, self.target_qnet, soft_tau)
self.target_policy_net=self.target_soft_update(self.policy_net, self.target_policy_net, soft_tau)
return q_loss.detach().cpu().numpy(), policy_loss.detach().cpu().numpy()
def save_model(self, path):
torch.save(self.qnet.state_dict(), path+'_q')
torch.save(self.target_qnet.state_dict(), path+'_target_q')
torch.save(self.policy_net.state_dict(), path+'_policy')
def load_model(self, path):
self.qnet.load_state_dict(torch.load(path+'_q'))
self.target_qnet.load_state_dict(torch.load(path+'_target_q'))
self.policy_net.load_state_dict(torch.load(path+'_policy'))
self.qnet.eval()
self.target_qnet.eval()
self.policy_net.eval()
def plot(rewards):
plt.figure(figsize=(20,5))
plt.plot(rewards)
plt.savefig('rdpg.png')
# plt.show()
plt.clf()
class NormalizedActions(gym.ActionWrapper): # gym env wrapper
def _action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def _reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action
if __name__ == '__main__':
NUM_JOINTS=2
LINK_LENGTH=[200, 140]
INI_JOING_ANGLES=[0.1, 0.1]
SCREEN_SIZE=1000
# SPARSE_REWARD=False
# SCREEN_SHOT=False
ENV = ['Pendulum', 'Reacher'][0]
if ENV == 'Reacher':
env=Reacher(screen_size=SCREEN_SIZE, num_joints=NUM_JOINTS, link_lengths = LINK_LENGTH, \
ini_joint_angles=INI_JOING_ANGLES, target_pos = [369,430], render=True)
action_space = spaces.Box(low=-1.0, high=1.0, shape=(env.num_actions,), dtype=np.float32)
state_space = spaces.Box(low=-np.inf, high=np.inf, shape=(env.num_observations, ))
elif ENV == 'Pendulum':
env = NormalizedActions(gym.make("Pendulum-v0"))
# env = gym.make("Pendulum-v0")
action_space = env.action_space
state_space = env.observation_space
hidden_dim = 64
explore_steps = 0 # for random exploration
batch_size = 3 # each sample in batch is an episode for lstm policy (normally it's timestep)
update_itr = 1 # update iteration
replay_buffer_size=1e6
replay_buffer = ReplayBufferLSTM2(replay_buffer_size)
model_path='./model/rdpg'
torch.autograd.set_detect_anomaly(True)
alg = RDPG(replay_buffer, state_space, action_space, hidden_dim)
if args.train:
# alg.load_model(model_path)
# hyper-parameters
max_episodes = 1000
max_steps = 100
frame_idx = 0
rewards=[]
for i_episode in range (max_episodes):
q_loss_list=[]
policy_loss_list=[]
state = env.reset()
episode_reward = 0
last_action = env.action_space.sample()
episode_state = []
episode_action = []
episode_last_action = []
episode_reward = []
episode_next_state = []
episode_done = []
hidden_out = (torch.zeros([1, 1, hidden_dim], dtype=torch.float).cuda(), \
torch.zeros([1, 1, hidden_dim], dtype=torch.float).cuda()) # initialize hidden state for lstm, (hidden, cell), each is (layer, batch, dim)
for step in range(max_steps):
hidden_in = hidden_out
action, hidden_out = alg.policy_net.get_action(state, last_action, hidden_in)
next_state, reward, done, _ = env.step(action)
if ENV !='Reacher':
env.render()
if step==0:
ini_hidden_in = hidden_in
ini_hidden_out = hidden_out
episode_state.append(state)
episode_action.append(action)
episode_last_action.append(last_action)
episode_reward.append(reward)
episode_next_state.append(next_state)
episode_done.append(done)
state = next_state
last_action = action
frame_idx += 1
if len(replay_buffer) > batch_size:
for _ in range(update_itr):
q_loss, policy_loss = alg.update(batch_size)
q_loss_list.append(q_loss)
policy_loss_list.append(policy_loss)
if done: # should not break for lstm cases to make every episode with same length
break
if i_episode % 20 == 0:
plot(rewards)
alg.save_model(model_path)
print('Eps: ', i_episode, '| Reward: ', np.sum(episode_reward), '| Loss: ', np.average(q_loss_list), np.average(policy_loss_list))
replay_buffer.push(ini_hidden_in, ini_hidden_out, episode_state, episode_action, episode_last_action, \
episode_reward, episode_next_state, episode_done)
rewards.append(np.sum(episode_reward))
alg.save_model(model_path)
if args.test:
test_episodes = 10
max_steps=100
alg.load_model(model_path)
for i_episode in range (test_episodes):
q_loss_list=[]
policy_loss_list=[]
state = env.reset()
episode_reward = 0
last_action = np.zeros(action_space.shape[0])
hidden_out = (torch.zeros([1, 1, hidden_dim], dtype=torch.float).cuda(), \
torch.zeros([1, 1, hidden_dim], dtype=torch.float).cuda()) # initialize hidden state for lstm, (hidden, cell), each is (layer, batch, dim)
for step in range(max_steps):
hidden_in = hidden_out
action, hidden_out= alg.policy_net.get_action(state, last_action, hidden_in, noise_scale=0.0) # no noise for testing
next_state, reward, done, _ = env.step(action)
env.render()
last_action = action
state = next_state
episode_reward += reward
if done:
break
print('Eps: ', i_episode, '| Reward: ', episode_reward)