-
Notifications
You must be signed in to change notification settings - Fork 28
/
TEST_AMBI_SCRIPT.m
938 lines (861 loc) · 42 KB
/
TEST_AMBI_SCRIPT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
%% COMPACT HIGHER-ORDER AMBISONIC LIBRARY
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Archontis Politis, 2015
% Department of Signal Processing and Acoustics, Aalto University, Finland
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
% This is a compact Matlab/Octave library implementing most common operations
% associated with higher-order ambisonics (HOA), which refer to a set of
% spatial audio techniques for capturing, manipulating and reproducing
% sound scenes, based on a spherical Fourier expansion of the sound field.
%
% The included functions implement HOA encoding of directional sounds,
% decoding using various decoding approaches, and rotation of HOA sound
% scenes. All operations are defined in terms of orthonormalized real
% Spherical Harmonics (N3D in ambisonic slang) and channel indexing
% according to $q = n^2+n+m+1$, where n is the order and m is the degree (ACN
% in ambisonic slang). However, functions are included to convert to and
% from N3D/ACN to some other established conventions (namely
% semi-normalized SHs (SN3D) and an alternative channel indexing, termed
% SID).
%
% Ambisonic decoding can be approached from various sides, more physically
% inspired or more perceptually inspired. Five approaches are implemented
%
% * 1) Sampling or projection decoding (transpose)
% * 2) Mode-matching decoding (pseudo-inverse)
% * 3) Energy-preserving decoding [ref.1]
% * 4) All-round ambisonic decoding [ref.2]
% * 5) Constant-angular spread decoding [ref.3]
%
% Apart from the two first traditional approaches, the three last are more
% recent and more perceptually motivated. They are also more
% flexible and robust, in terms of loudspeaker layouts.
%
% Additionally, a function evaluating and visualizing the popular ambisonic
% performance measures, velocity and energy vectors, along with overall
% energy and amplitude preservation, is included.
%
% Max-rE weighting for the decoder [ref.4 & ref.2] can be optionally enabled.
%
% ALLRAD and CSAD decoders require computation of amplitude and energy
% panning gains, and large spherical uniform sampling schemes (t-Designs).
% Both of these can be found firs in the Matlab/Octave VBAP library in
%
% <https://github.com/polarch/Vector-Base-Amplitude-Panning>
%
% and the general Spherical harmonic transform library by the author found in
%
% <https://github.com/polarch/Spherical-Harmonic-Transform>,
%
% These two libraries should be added to the Matlab path before executing
% this script.
%
% Rotation, apart from the case of simple B-format, also depends on the
% larger spherical harmonic transform library, which contains many
% other operations that may be of interest to ambisonics, like directional
% smoothing (spherical convolution) and directional weighting/shaping
% (spherical multiplication).
%
% The library contains the following main functions:
%
% * ambiDecoder: Compute a HOA decoding matrix for a specified order and
% a specified method, with or without max-rE weighting
% * analyzeDecoder: Analyze amplitude, energy, velocity and energy vector
% magnitudes and directional errors and spread, for an
% ambisonic decoder, or from panning gains
% * getRSH: returns values of real orthonormal spherical harmonics
% vectors of directions
% * encodeHOA_N3D: encode a number of source signals from various directions
% to arbitrary-order HOA signals (N3D, ACN)
% * encodeBformat: encode a number of source signals from various directions
% to traditional B-format signals
% * decodeHOA_N3D: decode HOA signals to a loudspeaker setup, using a
% certain decoding matrix (frequency-dependent decoding
% possible, see below)
% * decodeBformat: decode B-format signals to a loudspeaker setup, using a
% certain decoding matrix
% * rotateHOA_N3D: rotate sound scenes encoded or recorded in HOA signals,
% using a yaw-pitch-roll convention
% * rotateBformat: rotate sound scenes encoded or recorded to B-format signals,
% using a yaw-pitch-roll convention
% * allrad: implements the all-round ambisonic decoder
% * csad: implements the constant-angular spread decoder
% * getLayoutAmbisonicOrder: Compute the equivalent ambisonic order for
% regular and irregular speaker arrangements
% * getMaxREweights: Compute the max-rE weights for a certain order, for
% decoding (or encoding) weighting
% * getTheoreticalEVmag: Compute the theoretical energy vector magnitude
% of a plane-wave encoded to a certain order,
% with max-rE weighting
% * plotSphericalGrid: Plots angular quantities in a 2D azimuth-elevation
% grid, with loudspeaker positions superimposed
%
%
% For any questions, comments, corrections, or general feedback, please
% contact [email protected]
%% ENERGY AND VELOCITY VECTOR ANALYSIS
%
% The velocity (or Makita) vector [ref.5] and the energy (or Gerzon) vector
% [ref.6], computed from the loudspeaker layout and the panning gains for a
% certain panning direction, are believed to indicate perceived directions
% along with localization blur and source spread. These two vectors
% are actually related to the more general acoustic intensity vector, and
% the diffuseness or reactivity of the soundfield at the listening spot,
% but they are simpler to compute (see [ref.7]). They have been fundamental
% in the design of ambisonic systems. Psychoacoustical validation of their
% relation to localization attributes has only recently been studied [ref.8].
%
% Generally, loudspeaker gains have to preserve the energy of a sound coming
% from a certain direction, so that the loudspeaker setup does not affect
% its loudness. This energy preservation property can be given as:
%
% $$E(\theta,\phi) = \sum_{l=1}^L g_l^2(\theta,\phi) = \mathrm{constant}$$
%
% while at low frequencies it is more appropriate to preserve the total
% amplitude, since a coherent summation model at the listener's
% ears is more appropriate (see [ref.9])
%
% $$A(\theta,\phi) = \sum_{l=1}^L g_l(\theta,\phi) = \mathrm{constant}$.
%
% Here $\theta,\phi$ denote azimuth and elevation, and $g_l$ are the
% loudspeaker gains for the specific direction. Velocity and energy vectors
% are then given by
%
% $$\vec{r}_v(\theta,\phi) = \frac{\sum_{l=1}^L g_l(\theta,\phi) \vec{u}_l}{A(\theta,\phi)}$$
%
% and
%
% $$\vec{r}_e(\theta,\phi) = \frac{\sum_{l=1}^L g_l^2(\theta,\phi) \vec{u}_l}{E(\theta,\phi)}$.
%
% where $\vec{u}_l$ are the unit vectors pointing to the speakers. Analysis
% of a panner or decoder in terms of energy/amplitude preservation and
% velocity/energy vectors can be done with analyzeDecoder().
%
% In terms of ambisonic decoding, for a uniform arrangement of loudspeakers,
% the ambisonic order of the layout can be readily given by
%
% $$N = \lfloor \sqrt{L} - 1 \rfloor$.
%
% For irregular layouts, evaluating an effective order is more complicated,
% Zotter & Frank in [ref.2] propose an equivalent ambisonic order having to
% do with the average spread of the layout. The equivalent ambisonic order
% can be evaluated here by getLayoutAmbisonicOrder().
%
% A relation of the source spread/localization blur, with repect to the
% magnitude of the energy vector is given by Daniel or Zotter in [ref.4 & 2]
%
% $$\gamma = 2\arccos(||\vec{r}_e||)180/\pi$.
%
% while an alternative definition is given by Epain et al. in [ref.3]
%
% $$\gamma = 2\arccos(2||\vec{r}_e||-1)180/\pi$.
%
% Finally, Frank in [ref.10] proposes a psychoacoustic curve between the
% relation of the enegry vector magnitude and perceived spread, from
% listening tests:
%
% $$\gamma = 186.4(1-||\vec{r}_e||)+10.7$.
%
% In any case, the best energy vector magnitude, and so minimal spread,
% that can be achieved for a certain decoding order (due to a theoretical
% continuous ambisonic loudspeaker setup) is given by [ref.4 & 2]
%
% $$||\vec{r}_e|| = \frac{2 \sum_{n=0}^N (n+1)a_n a_{n+1}} {\sum_{n=0}^N (2n+1)a^2_n }$.
%
% where $a_n$ are the per-order decoding weights, such as the max-rE ones.
% These metrics for a certain panner/decoder are displayed if the flag
% INFO_ON on the analyzeDecoder() is set to true.
%
% A first example is shown for pure amplitude panning (and energy panning)
% functions, which are not ambisonic but they serve as basis for some of
% the more flexible ambisonic decoders included here.
% define a 3D layout with the shape of an icosahedron
[~, ls_dirs_rad] = platonicSolid('icosahedron');
ls_dirs = ls_dirs_rad*180/pi;
ls_num = size(ls_dirs,1);
aziRes = 5;
polarRes = 5;
ang_res = [aziRes polarRes];
g_vbap = getGainTable(ls_dirs, ang_res, 0, 'vbap');
[g_vbip, g_dirs] = getGainTable(ls_dirs, ang_res, 0, 'vbip');
% reshape the 1D array of gains (times ls_num) returned by getGainTable()
% to a 2D azimuth-elevation matrix (times ls_num)
G_vbap = permute(reshape(g_vbap, [(360/aziRes+1) (180/polarRes+1) ls_num]), [2 1 3]);
G_vbip = permute(reshape(g_vbip, [(360/aziRes+1) (180/polarRes+1) ls_num]), [2 1 3]);
% analyze and plot panners for the grid of panning directions on the gain
% table
analyzeDecoder(G_vbap, ls_dirs, 'panner', ang_res, 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle('Vector-base Amplitude Panning analysis - power normalization')
%%
analyzeDecoder(G_vbip, ls_dirs, 'panner', ang_res, 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle('Vector-base Intensity Panning analysis')
%%
% an example of re-normalized vbap gains for amplitude normalization, e.g.
% suitable for low frequencies
g_vbap_renorm = g_vbap./( sum(g_vbap,2)*ones(1,ls_num) );
G_vbap_renorm = permute(reshape(g_vbap_renorm, [(360/aziRes+1) (180/polarRes+1) ls_num]), [2 1 3]);
analyzeDecoder(G_vbap_renorm, ls_dirs, 'panner', ang_res, 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle('Vector-base Amplitude Panning analysis - amplitude normalization')
%%
% It is evident that VBAP maximises the velocity vector, with zero
% directional error, while VBIP maximises the energy vector, with zero
% directional error. Both of them produce very high magnitudes for the two
% vectors since they use the minimal number of loudspeakers, at the expense
% of a variable spread with direction (which is otherwie also the minimum
% possible for each direction).
%% SAMPLING DECODING (SAD)
%
% The sampling, or projection, decoder, is the simplest, and essentially
% corresponds to a plane-wave decomposition at the direction of each
% loudspeaker, band-limited to the supported order of the layout (an alternative
% interpretation is that the decoder forms higher-order hypercardioids, or
% virtual microphones in ambisonic slang, to the direction of the loudspeakers).
% It is easy to see how this decoder would be robust to irregular
% loudspeaker layouts, but it won't preserve the energy of a source or
% localization cues for all directions.
%
% In the following example, analysis plots are generated for a uniform minimal
% 1st-order layout, a uniform 3rd-order layout, and a 22.0 irregular setup.
% tetrahedral setup
[~, ls_dirs4_rad] = platonicSolid('tetra');
ls_dirs4 = ls_dirs4_rad*180/pi;
ls_num = size(ls_dirs4,1);
% get order (1 in this case)
N = floor(sqrt(ls_num) - 1);
% get a sampling decoder
D_sad4 = ambiDecoder(ls_dirs4, 'sad', 0, N);
% analyze decoder properties
analyzeDecoder(D_sad4, ls_dirs4, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Sampling Decoder - ' num2str(N) 'st-order - tetrahedral layout'])
%%
% dodecahedral setup
[~, ls_dirs20_rad] = platonicSolid('dodecahedron');
ls_dirs20 = ls_dirs20_rad*180/pi;
ls_num = size(ls_dirs20,1);
% get order (3 in this case)
N = floor(sqrt(ls_num) - 1);
% get a projection (sampling) decoder
D_sad20 = ambiDecoder(ls_dirs20, 'sad', 0, N);
% analyze decoder properties
analyzeDecoder(D_sad20, ls_dirs20, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Sampling Decoder - ' num2str(N) 'st-order - dodecahedral layout'])
%%
% 22.2 style loudspeaker layout - quite irregular
ls_dirs22 = [45 -45 0 135 -135 15 -15 90 -90 180 45 -45 0 135 -135 90 -90 180 0 45 -45 0;
0 0 0 0 0 0 0 0 0 0 45 45 45 45 45 45 45 45 90 -30 -30 -30]';
ls_num = size(ls_dirs22,1);
% get order
N = floor(sqrt(ls_num) - 1);
% get ambisonic equivalent order, for comparison
Neq = getLayoutAmbisonicOrder(ls_dirs);
% get a projection (sampling) decoder
D_sad22 = ambiDecoder(ls_dirs22, 'sad', 0, N);
% analyze decoder properties
analyzeDecoder(D_sad22, ls_dirs22, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Sampling Decoder - ' num2str(N) 'st-order - 22.0 layout'])
%% MODE-MATCHING DECODING (MMD)
%
% The mode-matching decoder is the most 'physically'-based decoder, and it
% results from equating the spherical expansion of a plane wave for an
% arbitrary direction, to a weighted spherical expansion of the plane waves
% emitted by the loudspeaker setup, solving for the weights in a
% least-square sense. The solution is simply the pseudo-inverse of the SHs
% on the direction of the speakers. Even though, mode-matching is an exact
% solution at some small region (order and frequency-dependent) around the
% sweet-spot, in practice it is useful only at low frequencies, and only
% for regular layouts, as it is very sensitive to irregularities.
%
% In the following example, analysis plots are generated for a uniform minimal
% 1st-order layout, a uniform 3rd-order layout, and a 22.0 irregular setup.
% tetrahedral setup
[~, ls_dirs4_rad] = platonicSolid('tetra');
ls_dirs4 = ls_dirs4_rad*180/pi;
ls_num = size(ls_dirs4,1);
% get order (1 in this case)
N = floor(sqrt(ls_num) - 1);
% get a MMD
D_mmd4 = ambiDecoder(ls_dirs4, 'mmd', 0, N);
% analyze decoder properties
analyzeDecoder(D_mmd4, ls_dirs4, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Mode-matching Decoder - ' num2str(N) 'st-order - tetrahedral layout'])
%%
% dodecahedral setup
[~, ls_dirs20_rad] = platonicSolid('dodecahedron');
ls_dirs20 = ls_dirs20_rad*180/pi;
ls_num = size(ls_dirs20,1);
% get order (3 in this case)
N = floor(sqrt(ls_num) - 1);
% get a MMD
D_mmd20 = ambiDecoder(ls_dirs20, 'mmd', 0, N);
% analyze decoder properties
analyzeDecoder(D_mmd20, ls_dirs20, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Mode-matching Decoder - ' num2str(N) 'st-order - dodecahedral layout'])
%%
% 22.2 style loudspeaker layout - quite irregular
ls_dirs22 = [45 -45 0 135 -135 15 -15 90 -90 180 45 -45 0 135 -135 90 -90 180 0 45 -45 0;
0 0 0 0 0 0 0 0 0 0 45 45 45 45 45 45 45 45 90 -30 -30 -30]';
ls_num = size(ls_dirs22,1);
% get order
N = floor(sqrt(ls_num) - 1);
% get a MMD
D_mmd22 = ambiDecoder(ls_dirs22, 'mmd', 0, N);
% analyze decoder properties
analyzeDecoder(D_mmd22, ls_dirs22, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Mode-matching Decoder - ' num2str(N) 'st-order - 22.0 layout'])
%%
% Mode-matching is problematic for irregular layouts, due to the inversion
% of the sampling matrix that becomes unstable - the effect can be seen at
% the energy amplification at directions for which the layout is quite
% sparse.
%% ENERGY-PRESERVING DECODING (EPAD)
%
% This approach has been devised by Zotter et al [ref.1] to address the
% energy-preserving issues of the previous two basic decoding approaches,
% especially for irregular layouts. It resembles the projection decoding,
% but with an additional singular value decomposition of the sampling
% matrix, appropriate truncation and omission of the singular values,
% resulting in a semi-orthogonal decoding matrix that preserves energy.
%
% In the following example, analysis plots are generated for a uniform minimal
% 1st-order layout, a uniform 3rd-order layout, and a 22.0 irregular setup.
% tetrahedral setup
[~, ls_dirs4_rad] = platonicSolid('tetra');
ls_dirs4 = ls_dirs4_rad*180/pi;
ls_num = size(ls_dirs4,1);
% get order (1 in this case)
N = floor(sqrt(ls_num) - 1);
% get an EPAD
D_epad4 = ambiDecoder(ls_dirs4, 'epad', 0, N);
% analyze decoder properties
analyzeDecoder(D_epad4, ls_dirs4, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Energy-preserving Decoder - ' num2str(N) 'st-order - tetrahedral layout'])
%%
% dodecahedral setup
[~, ls_dirs20_rad] = platonicSolid('dodecahedron');
ls_dirs20 = ls_dirs20_rad*180/pi;
ls_num = size(ls_dirs20,1);
% get order (3 in this case)
N = floor(sqrt(ls_num) - 1);
% get an EPAD
D_epad20 = ambiDecoder(ls_dirs20, 'epad', 0, N);
% analyze decoder properties
analyzeDecoder(D_epad20, ls_dirs20, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Energy-preserving Decoder - ' num2str(N) 'st-order - dodecahedral layout'])
%%
% 22.2 style loudspeaker layout - quite irregular
ls_dirs22 = [45 -45 0 135 -135 15 -15 90 -90 180 45 -45 0 135 -135 90 -90 180 0 45 -45 0;
0 0 0 0 0 0 0 0 0 0 45 45 45 45 45 45 45 45 90 -30 -30 -30]';
ls_num = size(ls_dirs22,1);
% get order
N = floor(sqrt(ls_num) - 1);
% get an EPAD
D_epad22 = ambiDecoder(ls_dirs22, 'epad', 0, N);
% analyze decoder properties
analyzeDecoder(D_epad22, ls_dirs22, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Energy-preserving Decoder - ' num2str(N) 'st-order - 22.0 layout'])
%% ALL-ROUND AMBISONIC DECODING (ALLRAD)
%
% ALLRAD is one of the two more advanced and flexible decoding approaches,
% implemented here. It has been presented by Zotter anf Frank in [ref.2] and
% manages to handle well irregular loudspeaker setups, with low directional
% error and with good energy-preserving properties. This is achieved by a
% combination of amplitude panning (VBAP) stage rendering virtual sources
% that correspond to a uniform dense arrangement, which due to its uniformity
% satisfies all ambisonic analysis requirements. The VBAP renders this
% virtual ideal decoder to an arbitrary layout.
%
% In the following example, analysis plots are generated for a uniform minimal
% 1st-order layout, a uniform 3rd-order layout, and a 22.0 irregular setup.
% tetrahedral setup
[~, ls_dirs4_rad] = platonicSolid('tetra');
ls_dirs4 = ls_dirs4_rad*180/pi;
ls_num = size(ls_dirs4,1);
% get order (1 in this case)
N = floor(sqrt(ls_num) - 1);
% get an ALLRAD
D_allrad4 = ambiDecoder(ls_dirs4, 'allrad', 0, N);
% analyze decoder properties
analyzeDecoder(D_allrad4, ls_dirs4, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['All-round Ambisonic Decoder - ' num2str(N) 'st-order - tetrahedral layout'])
%%
% dodecahedral setup
[~, ls_dirs20_rad] = platonicSolid('dodecahedron');
ls_dirs20 = ls_dirs20_rad*180/pi;
ls_num = size(ls_dirs20,1);
% get order (3 in this case)
N = floor(sqrt(ls_num) - 1);
% get an ALLRAD
D_allrad20 = ambiDecoder(ls_dirs20, 'allrad', 0, N);
% analyze decoder properties
analyzeDecoder(D_allrad20, ls_dirs20, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['All-round Ambisonic Decoder - ' num2str(N) 'st-order - dodecahedral layout'])
%%
% 22.2 style loudspeaker layout - quite irregular
ls_dirs22 = [45 -45 0 135 -135 15 -15 90 -90 180 45 -45 0 135 -135 90 -90 180 0 45 -45 0;
0 0 0 0 0 0 0 0 0 0 45 45 45 45 45 45 45 45 90 -30 -30 -30]';
ls_num = size(ls_dirs22,1);
% get order
N = floor(sqrt(ls_num) - 1);
% get an ALLRAD
D_allrad22 = ambiDecoder(ls_dirs22, 'allrad', 0, N);
% analyze decoder properties
analyzeDecoder(D_allrad22, ls_dirs22, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['All-round Ambisonic Decoder - ' num2str(N) 'st-order - 22.0 layout'])
%% CONSTANT ANGULAR SPREAD DECODING (CSAD)
%
% CSAD is the most recent proposal for flexible and robust ambisonic decoding,
% proposed by Epain et al. in [ref.3]. Similar to ALLRAD it uses a
% panning stage, based on VBIP, an energy-based variant of VBAP, in order
% to derive gains that have zero energy-vector directional error, and
% additionally they exhibit a constant energy-vector magnitude, which
% presumable results in a perceptual angular spread/blur that does not
% change with direction. The resulting VBIP gains are approximated by an
% ambisonic decoding matrix in a least-squares sense.
%
% The version implemented here is a "lazy-man's" version, since it does not
% consider the more elaborate smooth windowing of the panning sources in
% the reference. Instead a plain rectangular angular window is used.
% However, it seems to perform well, with only small deviations compared to
% the published results.
%
% In the following example, analysis plots are generated for a uniform minimal
% 1st-order layout, a uniform 3rd-order layout, and a 22.0 irregular setup.
% tetrahedral setup
[~, ls_dirs4_rad] = platonicSolid('tetra');
ls_dirs4 = ls_dirs4_rad*180/pi;
ls_num = size(ls_dirs4,1);
% get order (1 in this case)
N = floor(sqrt(ls_num) - 1);
% get a CSAD
D_csad4 = ambiDecoder(ls_dirs4, 'csad', 0, N);
% analyze decoder properties
analyzeDecoder(D_csad4, ls_dirs4, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Constant Spread Decoder - ' num2str(N) 'st-order - tetrahedral layout'])
%%
% dodecahedral setup
[~, ls_dirs20_rad] = platonicSolid('dodecahedron');
ls_dirs20 = ls_dirs20_rad*180/pi;
ls_num = size(ls_dirs20,1);
% get order (3 in this case)
N = floor(sqrt(ls_num) - 1);
% get a CSAD
D_csad20 = ambiDecoder(ls_dirs20, 'csad', 0, N);
% analyze decoder properties
analyzeDecoder(D_csad20, ls_dirs20, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Constant Spread Decoder - ' num2str(N) 'st-order - dodecahedral layout'])
%%
% Even though this decoder should be able to handle irregular setups, it
% seems that (at least the current implementation) the optimization part
% has difficulties with quite irregular setups like the 22.0 one. In this
% case, the decoding takes ages to return results and the results
% themselves are very poor, indicating probably that the optimization
% fails to converge. (REALLY SLOW!)
% % 22.2 style loudspeaker layout - quite irregular
% ls_dirs22 = [45 -45 0 135 -135 15 -15 90 -90 180 45 -45 0 135 -135 90 -90 180 0 45 -45 0;
% 0 0 0 0 0 0 0 0 0 0 45 45 45 45 45 45 45 45 90 -30 -30 -30]';
% ls_num = size(ls_dirs22,1);
% % get order
% N = floor(sqrt(ls_num) - 1);
% % get a CSAD
% D_csad22 = ambiDecoder(ls_dirs22, 'csad', 0, N);
% % analyze decoder properties
% analyzeDecoder(D_csad22, ls_dirs22, 'decoder', [5 5], 1, 1);
%%
% However, giving a more complete irregular setup, based on the 22.0 with
% only 3 additional speakers, returns fast results with excellent properties.
% 22.2 style loudspeaker layout with 3 extra speakers - more regular
ls_dirs25 = [45 -45 0 135 -135 15 -15 90 -90 180 45 -45 0 135 -135 90 -90 180 0 45 -45 0 135 -135 0;
0 0 0 0 0 0 0 0 0 0 45 45 45 45 45 45 45 45 90 -30 -30 -30 -30 -30 -90]';
ls_num = size(ls_dirs25,1);
% get order
N = floor(sqrt(ls_num) - 1);
% get a CSAD
D25 = ambiDecoder(ls_dirs25, 'csad', 0, N);
% analyze decoder properties
analyzeDecoder(D25, ls_dirs25, 'decoder', [5 5], 1, 1);
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle(['Constant Spread Decoder - ' num2str(N) 'st-order - 22.0 layout with 3 extra speakers'])
%% THE MAX-rE WEIGHTING
%
% In ambisonic literature, it is generally believed that the properties of
% the energy vector are the most crucial for accurate rendering, with the
% magnitude of the vector related to localization blur, as it was mentioned
% above. Decoding at mid-high frequencies aims at optimizing the energy
% vector. Max-rE weighting (actually meaning "max energy vector magnitude"
% weighting) was introduced by Gerzon for first-order decoders, and
% formalized by Daniel [ref.4] for higher-order decoders. A derivation is
% also given by Zotter in [ref.2]. It corresponds to a per-order weighting
% of the decoder, that results in maximum-norm energy vectors, compared to
% the unweighted cases like all the previous examples. If a single decoder
% is used for all frequencies, then max-rE weighting should be preferred,
% if two (or more) decoding matrices are used for different ranges, then
% the lowest range should use unweighted decoding (which has maximum
% velocity vector, suitable for low frequencies) and weighted max-rE at all
% ranges above. Max-rE can be enabled as a flag in ambiDecoder().
%
% Note the the Constant-angular Spread Decoder (CSAD) maximizes the energy
% vector (with constraints) by design, so max-rE weighting should not be
% applied in this case as it will affect its performance.
%
% The example below showcases the unweighted vs. max-rE magnitude of the
% energy vector, for all of the above decoders and the uniform 20-speaker
% layout.
ls_num = size(ls_dirs20,1);
% get order (3 in this case)
N = floor(sqrt(ls_num) - 1);
% get max-rE weights up to N
a_n = getMaxREweights(N);
% apply weighting to decoders
D_sad20_maxrE = D_sad20*diag(a_n);
D_mmd20_maxrE = D_mmd20*diag(a_n);
D_epad20_maxrE = D_epad20*diag(a_n);
D_allrad20_maxrE = D_allrad20*diag(a_n);
% Plots
figure
subplot(241)
[~, ~, ~, rE_mag1] = analyzeDecoder(D_sad20, ls_dirs20, 'decoder', ang_res);
plotSphericalGrid(rE_mag1, ang_res, ls_dirs20, gca);
title('SAD - unweighted')
subplot(245)
[~, ~, ~, rE_mag2] = analyzeDecoder(D_sad20_maxrE, ls_dirs20, 'decoder', ang_res);
plotSphericalGrid(rE_mag2, ang_res, ls_dirs20, gca);
title('SAD - max-rE weighting')
subplot(242)
[~, ~, ~, rE_mag1] = analyzeDecoder(D_mmd20, ls_dirs20, 'decoder', ang_res);
plotSphericalGrid(rE_mag1, ang_res, ls_dirs20, gca);
title('MMD - unweighted')
subplot(246)
[~, ~, ~, rE_mag2] = analyzeDecoder(D_mmd20_maxrE, ls_dirs20, 'decoder', ang_res);
plotSphericalGrid(rE_mag2, ang_res, ls_dirs20, gca);
title('MMD - max-rE weighting')
subplot(243)
[~, ~, ~, rE_mag1] = analyzeDecoder(D_epad20, ls_dirs20, 'decoder', ang_res);
plotSphericalGrid(rE_mag1, ang_res, ls_dirs20, gca);
title('EPAD - unweighted')
subplot(247)
[~, ~, ~, rE_mag2] = analyzeDecoder(D_epad20_maxrE, ls_dirs20, 'decoder', ang_res);
plotSphericalGrid(rE_mag2, ang_res, ls_dirs20, gca);
title('EPAD - max-rE weighting')
subplot(244)
[~, ~, ~, rE_mag1] = analyzeDecoder(D_allrad20, ls_dirs20, 'decoder', ang_res);
plotSphericalGrid(rE_mag1, ang_res, ls_dirs20, gca);
title('ALLRAD - unweighted')
subplot(248)
[~, ~, ~, rE_mag2] = analyzeDecoder(D_allrad20_maxrE, ls_dirs20, 'decoder', ang_res, 0);
plotSphericalGrid(rE_mag2, ang_res, ls_dirs20, gca);
title('ALLRAD - max-rE weighting')
h = gcf; h.Position(3) = 2.5*h.Position(3); h.Position(4) = 1.3*h.Position(4);
suptitle('Energy vector magnitude for unweighted and max-rE weighted decoders - dodecahedral layout')
%%
% The effect of the max-rE weighting is very pronounced in the case of the
% 'traditional' decoders, the sampling and mode-matching, while it is
% smaller in the case of the energy-preserving and all-round decoders.
%% ENCODING/DECODING AMBISONIC SIGNALS
%
% Encoding and decoding ambisonic signals is straightforward. The example
% below shows encoding two noise signals at two directions to 3rd-order
% HOA signals, and then decoding them at 84 uniformly arranged loudspeakers
% using an ALLRAD max-rE decoder.
% encode two signals of 5sec of noise, coming from the front and
% front-left-up
fs = 48000;
t = 5;
src_sig = randn(t*fs, 2);
src_dir = [0 0; 90 30];
order = 2;
hoasig = encodeHOA_N3D(order, src_sig, src_dir);
% define a 12-speaker uniform setup
[u12, ls_dirs12_rad, mesh12] = platonicSolid('icosahedron');
ls_dirs12 = ls_dirs12_rad*180/pi;
% get ALLRAD decoder
MAXRE_ON = 1;
D_allrad12 = ambiDecoder(ls_dirs12, 'allrad', MAXRE_ON, order);
% decode signals
lssig = decodeHOA_N3D(hoasig, D_allrad12);
% alternatively
% lssig = hoasig * D_allrad12.';
% plot RMS distribution of the decoded signals, along speaker directions
Psig = sqrt(mean(lssig.^2)).';
Sx = zeros(2,12); Sx(2,:) = u12(:,1); % speaker lines
Sy = zeros(2,12); Sy(2,:) = u12(:,2); % speaker lines
Sz = zeros(2,12); Sz(2,:) = u12(:,3); % speaker lines
figure
patch('vertices', mesh12.vertices .* (Psig*ones(1,3)), 'faces', mesh12.faces, 'facecolor', 'm')
line([0 1.5*max(Psig)],[0 0],[0 0],'color','r') % axis lines
line([0 0],[0 1.5*max(Psig)],[0 0],'color','g') % axis lines
line([0 0],[0 0],[0 1.5*max(Psig)],'color','b') % axis lines
line(Sx,Sy,Sz,'color','k') % plot speakers
axis equal
xlabel('x'), ylabel('y'), zlabel('z'), grid, view(100,20)
h = gcf; h.Position(3:4) = 2*h.Position(3:4);
suptitle('RMS signal power of speaker channels for two decoded sources - icosahedral layout')
%% FREQUENCY DEPENDENT-DECODING
%
% When HOA-encoded sound scenes are used, like in the previous example, the
% HOA signals are broadband and frequency considerations depend only on the
% reproduction side. A common approach is to use an amplitude preserving
% unweighted decoder at low frequencies, with a cutoff frequency between
% 400~700Hz depending on the room, and an energy preserving max-rE weighted
% decoder at higher frequencies (termed dual-band decoding in ambisonic slang).
%
% Decoding ambisonic recordings, however, captured with some spherical
% microphone array, is more complicated because the HOA signals themselves
% become frequency-dependent due to the microphone array properties.
% This is not very obvious with 1st-order signals (B-format), but it
% becomes very pronounced for higher-orders. E.g. the Eigenmike array
% delivers 2nd-order signals above ~500Hz and 3rd-order signals above
% ~1300Hz. Using a single decoding matrix for all mid-high frequencies may
% sound ok and it's definitely the simplest solution, but technically there
% will be some loss of power and colouration for a source captured from
% some direction and then decoded, due to the decoding matrix tuned to
% preserve energy using all HOA signals. Since certain HOA signals vanish
% at certain ranges, an alternative approach is to use as many decoding
% matrices as HOA frequency ranges, e.g. for the Eigenmike case: an
% amplitude-preserving unweighted 1st-order decoder f<500Hz, an
% energy-preserving max-rE 2nd-order decoder 500Hz<f<1200Hz, an
% energy-preserving max-rE 3rd-order decoder 1200Hz<f.
%
% Frequency dependent-decoding can be done using decodeHOA_N3D() function,
% and passing an additional argument specifying the cutoff frequencies for
% the HOA ranges. As many decoding matrices as ranges should be defined in
% this case. A filterbank is applied internally to split the signals,
% decode the different ranges and combine the speaker outputs.
% encode one noise signal of 5sec of noise, coming from the front
fs = 48000;
t = 5;
src_sig = randn(t*fs, 1);
src_dir = [0 0];
order = 3;
hoasig = encodeHOA_N3D(order, src_sig, src_dir);
% Dual-band decoding at a 20-speaker uniform setup
[~, ls_dirs20_rad] = platonicSolid('dodecahedron'); % dodecahedral setup
ls_dirs20 = ls_dirs20_rad*180/pi;
ls_num = size(ls_dirs20,1);
cutoff = 500;
order = 3;
D_low = ambiDecoder(ls_dirs20, 'mmd', 0, order);
D_high = ambiDecoder(ls_dirs20, 'allrad', 1, order);
D_dualband = cat(3, D_low, D_high);
y_dualband = decodeHOA_N3D(hoasig, D_dualband, cutoff, fs);
% Frequency/order-dependent decoding for the Eigenmike at a 20-speaker uniform setup
cutoffs = [500 1200];
max_order = 3;
D_eigen = zeros(ls_num,(max_order+1)^2, max_order);
% f<500Hz, 1st-order
D_eigen(:,1:2^2,1) = ambiDecoder(ls_dirs20, 'mmd', 0, 1);
% 500<f<1200Hz, 2nd-order
D_eigen(:,1:3^2,2) = ambiDecoder(ls_dirs20, 'allrad', 1, 2);
% 500<f<1200Hz, 3rd-order
D_eigen(:,1:4^2,3) = ambiDecoder(ls_dirs20, 'allrad', 1, 3);
y_eigen = decodeHOA_N3D(hoasig, D_eigen, cutoffs, fs);
%% ROTATION OF AMBISONIC SOUND SCENES (REQUIRES THE SHT-LIB)
%
% Rotation of the HOA sound scene can be achieved with appropriate rotation
% matrices, designed directly in the spherical harmonic domain. Apart from
% the case of the B-format rotation, which corresponds directly to standard
% rotation matrices, HO rotation matrices can be computed through the more
% general spherical harmonic transform library by the author (see
% introduction above for the link).
%
% After the library is added to the Matlab search path, rotations can be
% performed using the rotateHOA_N3D() function, specifying three angles on
% a yaw-pitch-roll convention.
%
% The following example encodes two sources to HOA signals, plots the
% decoding spatial power distribution, rotates the sound scene, and replots
% the rotated distribution.
% encode two signals of 5sec of noise, coming from the front and
% front-left-up
fs = 48000;
t = 5;
src_sig = randn(t*fs, 2);
src_dir = [0 0; 0 90];
order = 3;
hoasig = encodeHOA_N3D(order, src_sig, src_dir);
% rotate the sound scene, first around Z-axis by 90deg (yaw), then around
% the new Y'-axis by 45deg (pitch), then around the new X''-axis by 45deg
% (roll). Compute each step individually for plotting.
yaw = 90;
pitch = 45;
roll = 45;
hoasig_rot_y = rotateHOA_N3D(hoasig, yaw, 0, 0);
hoasig_rot_yp = rotateHOA_N3D(hoasig, yaw, pitch, 0);
hoasig_rot_ypr = rotateHOA_N3D(hoasig, yaw, pitch, roll);
% define an 84-speaker uniform setup
[u84, ls_dirs84_rad] = getTdesign(12);
ls_dirs84 = ls_dirs84_rad*180/pi;
mesh84.vertices = u84;
mesh84.faces = sphDelaunay(ls_dirs84_rad);
% get a sampling decoder
MAXRE_ON = 1;
D_sad84 = ambiDecoder(ls_dirs84, 'sad', MAXRE_ON, order);
% decode signals
LSsig84 = decodeHOA_N3D(hoasig, D_sad84);
% decode rotated signals
LSsig84_rot_y = decodeHOA_N3D(hoasig_rot_y, D_sad84);
LSsig84_rot_yp = decodeHOA_N3D(hoasig_rot_yp, D_sad84);
LSsig84_rot_ypr = decodeHOA_N3D(hoasig_rot_ypr, D_sad84);
% plot RMS power distribution of the decoded signals
Psig = sqrt(mean(LSsig84.^2)).';
figure
subplot(141)
patch('vertices', mesh84.vertices .* (Psig*ones(1,3)), 'faces', mesh84.faces, 'facecolor', 'm')
axis(max(Psig)*[-1 1 -1 1 -1 1]), axis equal
xlabel('x'), ylabel('y'), zlabel('z'), grid
line([0 max(Psig)],[0 0],[0 0],'color','r'), line([0 0],[0 -max(Psig)],[0 0],'color','g'), line([0 0],[0 0],[0 -max(Psig)],'color','b')
title('unrotated')
subplot(142)
Psig_rot = sqrt(mean(LSsig84_rot_y.^2)).';
patch('vertices', mesh84.vertices .* (Psig_rot*ones(1,3)), 'faces', mesh84.faces, 'facecolor', 'm')
axis(max(Psig)*[-1 1 -1 1 -1 1]), axis equal
xlabel('x'), ylabel('y'), zlabel('z'), grid
line([0 max(Psig_rot)],[0 0],[0 0],'color','r'), line([0 0],[0 -max(Psig_rot)],[0 0],'color','g'), line([0 0],[0 0],[0 -max(Psig_rot)],'color','b')
title('yaw (90deg)')
subplot(143)
Psig_rot = sqrt(mean(LSsig84_rot_yp.^2)).';
patch('vertices', mesh84.vertices .* (Psig_rot*ones(1,3)), 'faces', mesh84.faces, 'facecolor', 'm')
axis(max(Psig)*[-1 1 -1 1 -1 1]), axis equal
xlabel('x'), ylabel('y'), zlabel('z'), grid
line([0 max(Psig_rot)],[0 0],[0 0],'color','r'), line([0 0],[0 -max(Psig_rot)],[0 0],'color','g'), line([0 0],[0 0],[0 -max(Psig_rot)],'color','b')
title('yaw (90deg) - pitch (45deg)')
subplot(144)
Psig_rot = sqrt(mean(LSsig84_rot_ypr.^2)).';
patch('vertices', mesh84.vertices .* (Psig_rot*ones(1,3)), 'faces', mesh84.faces, 'facecolor', 'm')
axis(max(Psig)*[-1 1 -1 1 -1 1]), axis equal
xlabel('x'), ylabel('y'), zlabel('z'), grid
line([0 max(Psig_rot)],[0 0],[0 0],'color','r'), line([0 0],[0 -max(Psig_rot)],[0 0],'color','g'), line([0 0],[0 0],[0 -max(Psig_rot)],'color','b')
title('yaw (90deg) - pitch (45deg) - roll (45deg)'), view(3)
h = gcf; h.Position(3) = 2*h.Position(3);
suptitle('Successive yaw-pitch-roll rotations of decoded 3rd-order HOA signals')
%%
% B-format rotation requires just a regular rotation matrix, for this case
% use the rotateBformat() function. The example below duplicates the above
% HOA case, but doing everything with the traditional 1st-order B-format.
% encode two signals of 5sec of noise, coming from the front and
% front-left-up
fs = 48000;
t = 5;
src_sig = randn(t*fs, 2);
src_dir = [0 0; 0 90];
bfsig = encodeBformat(src_sig, src_dir);
% rotate the sound scene, first around Z-axis by 90deg (yaw), then around
% the new Y'-axis by 45deg (pitch), then around the new X''-axis by 45deg
% (roll). Compute each step individually for plotting.
yaw = 90;
pitch = 45;
roll = 45;
bfsig_rot_y = rotateBformat(bfsig, yaw, 0, 0);
bfsig_rot_yp = rotateBformat(bfsig, yaw, pitch, 0);
bfsig_rot_ypr = rotateBformat(bfsig, yaw, pitch, roll);
% decode signals
LSsig84 = decodeBformat(bfsig, D_sad84);
% decode rotated signals
LSsig84_rot_y = decodeBformat(bfsig_rot_y, D_sad84);
LSsig84_rot_yp = decodeBformat(bfsig_rot_yp, D_sad84);
LSsig84_rot_ypr = decodeBformat(bfsig_rot_ypr, D_sad84);
% plot RMS power distribution of the decoded signals
Psig = sqrt(mean(LSsig84.^2)).';
figure
subplot(141)
patch('vertices', mesh84.vertices .* (Psig*ones(1,3)), 'faces', mesh84.faces, 'facecolor', 'm')
axis(max(Psig)*[-1 1 -1 1 -1 1]), axis equal, grid
xlabel('x'), ylabel('y'), zlabel('z')
line([0 max(Psig)],[0 0],[0 0],'color','r'), line([0 0],[0 -max(Psig)],[0 0],'color','g'), line([0 0],[0 0],[0 -max(Psig)],'color','b')
title('unrotated')
subplot(142)
Psig_rot = sqrt(mean(LSsig84_rot_y.^2)).';
patch('vertices', mesh84.vertices .* (Psig_rot*ones(1,3)), 'faces', mesh84.faces, 'facecolor', 'm')
axis(max(Psig)*[-1 1 -1 1 -1 1]), axis equal, grid
xlabel('x'), ylabel('y'), zlabel('z')
line([0 max(Psig_rot)],[0 0],[0 0],'color','r'), line([0 0],[0 -max(Psig_rot)],[0 0],'color','g'), line([0 0],[0 0],[0 -max(Psig_rot)],'color','b')
title('yaw (90deg)')
subplot(143)
Psig_rot = sqrt(mean(LSsig84_rot_yp.^2)).';
patch('vertices', mesh84.vertices .* (Psig_rot*ones(1,3)), 'faces', mesh84.faces, 'facecolor', 'm')
axis(max(Psig)*[-1 1 -1 1 -1 1]), axis equal, grid
xlabel('x'), ylabel('y'), zlabel('z')
line([0 max(Psig_rot)],[0 0],[0 0],'color','r'), line([0 0],[0 -max(Psig_rot)],[0 0],'color','g'), line([0 0],[0 0],[0 -max(Psig_rot)],'color','b')
title('yaw (90deg) - pitch (45deg)')
subplot(144)
Psig_rot = sqrt(mean(LSsig84_rot_ypr.^2)).';
patch('vertices', mesh84.vertices .* (Psig_rot*ones(1,3)), 'faces', mesh84.faces, 'facecolor', 'm')
axis(max(Psig)*[-1 1 -1 1 -1 1]), axis equal, grid
xlabel('x'), ylabel('y'), zlabel('z')
line([0 max(Psig_rot)],[0 0],[0 0],'color','r'), line([0 0],[0 -max(Psig_rot)],[0 0],'color','g'), line([0 0],[0 0],[0 -max(Psig_rot)],'color','b')
title('yaw (90deg) - pitch (45deg) - roll (45deg)')
h = gcf; h.Position(3) = 2*h.Position(3); h.Position(4) = 1.5*h.Position(4);
suptitle('Successive yaw-pitch-roll rotations of decoded B-format signals')
%% CONVERSION BETWEEN DIFFERENT FORMATS
%
% All the HOA processing here assumes orthonormal real SHs, for the exact
% convention's details check the code of getRSH() or the documentation of
% the SHT-lib. Furthermore, indexing of HOA channels and SHs follows the
% rational single number indexing of SH components found in all other
% fields. These two conventions correspond to N3D normalization and ACN
% channel indexing in ambisonic slang. There are a few functions in the
% library that convert between these and two other common conventions - in
% case you obtain signals following them, you can use these functions to
% convert them to N3D_ACN and apply the operations of the library.
% Similarly, you can convert back to these other conventions if you need to
% share HOA signals in that format for any reason.
% One can convert from N3D to the Schmidt semi-normalization (SN3D), and
% back, and one can convert from the ACN channel indexing to the SID
% (see [ref.11]) indexing and back.
% N3D to SN3D and back
hoa_N3D_ACN = encodeHOA_N3D(3, 1, [0 0]);
hoa_SN3D_ACN = convert_N3D_SN3D(hoa_N3D_ACN, 'n2sn');
hoa_N3D_ACN_2 = convert_N3D_SN3D(hoa_SN3D_ACN, 'sn2n');
% ACN to SID and back
hoa_N3D_SID = convert_ACN_SID(hoa_N3D_ACN, 'acn2sid');
hoa_N3D_ACN_3 = convert_ACN_SID(hoa_N3D_SID, 'sid2acn');
% ACN to Bformat (1st-order only) and back. Here the 1/sqrt(2) factor of the
% B-format is assumed to be on the omni.
foa_N3D_ACN = encodeHOA_N3D(1, 1, [0 0]);
bf = convert_N3D_FuMa(foa_N3D_ACN, 'n2fuma');
foa_N3D_ACN_2 = convert_N3D_FuMa(bf, 'fuma2n');
%% REFERENCES
%
% [1] Zotter, F., Pomberger, H., Noisternig, M. (2012). Energy-Preserving Ambisonic Decoding. Acta Acustica United with Acustica, 98(1), 37:47.
%
% [2] Zotter, F., Frank, M. (2012). All-Round Ambisonic Panning and Decoding. Journal of the Audio Engineering Society, 60(10), 807:820.
%
% [3] Epain, N., Jin, C. T., Zotter, F. (2014). Ambisonic Decoding With Constant Angular Spread. Acta Acustica United with Acustica, 100, 928:936.
%
% [4] Daniel, J. (2001). Representation de champs acoustiques, application ? la transmission et ? la reproduction de sc?nes sonores complexes dans un contexte multim?dia. Doctoral Thesis. Universit? Paris 6.
%
% [5] Makita, Y. (1962). On the directional localization of sound in the stereophonic sound field. EBU Review, 73, 1536?1539.
%
% [6] Gerzon, M. A. (1992). General Metatheory of Auditory Localization. In 92nd AES Convention (Preprint 3306). Vienna, Austria.
%
% [7] Merimaa, J. (2007). Energetic sound field analysis of stereo and multichannel loudspeaker reproduction. In 123rd AES Convention. New York, NY.
%
% [8] Matthias, F. (2013). Phantom Sources using Multiple Loudspeakers in the Horizontal Plane. Doctoral thesis, Institute of Electronic Music and Acoustics, University of Music and Performing Arts, Graz
%
% [9] Laitinen, M., Vilkamo, J., Jussila, K., Politis, A., & Pulkki, V. (2014). Gain normalization in amplitude panning as a function of frequency and room reverberance. In 55th International Conference of AES. Helsinki, Finland.
%
% [10] Frank, M. (2013). Source Width of Frontal Phantom Sources: Perception, Measurement, and Modeling. Archives of Acoustics. 38(3), 311?319
%
% [11] Daniel, J. (2003). Spatial Sound Encoding Including Near Field Effect : Introducing Distance Coding Filters and a Viable , New Ambisonic Format. In 23rd International Conference of AES. Copenhagen, Denmark.
%