-
Notifications
You must be signed in to change notification settings - Fork 42
/
sym_w3j.m
64 lines (56 loc) · 2.17 KB
/
sym_w3j.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
function w = sym_w3j(j1, j2, j3, m1, m2, m3)
% SYM_W3J Returns the Wigner-3j symbols in symbolic form.
%
% W3J computes the Wigner 3j symbol through the Racah formula in
% symbolic (exact) form. It is extremely slow, useful however for
% testing of numerical results.
%
% http://mathworld.wolfram.com/Wigner3j-Symbol.html, Eq.7.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Archontis Politis, 5/10/2014
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check selection rules (http://mathworld.wolfram.com/Wigner3j-Symbol.html)
if abs(m1)>abs(j1) || abs(m2)>abs(j2) || abs(m3)>abs(j3)
w = sym(0);
elseif (m1+m2+m3~=0)
w = sym(0);
elseif j3<abs(j1-j2) || j3>(j1+j2) % triangle inequality
w = sym(0);
else
% evaluate the Wigner-3J symbol using the Racah formula (http://mathworld.wolfram.com/Wigner3j-Symbol.html)
% number of terms for the summation
N_t = max([j1+m1, j1-m1, j2+m2, j2-m2, j3+m3, j3-m3, j1+j2-j3, j2+j3-j1, j3+j1-j2]);
% coefficients before the summation
coeff1 = sym((-1)^(j1-j2-m3));
coeff2 = sym_fact(j1+m1)*sym_fact(j1-m1)*sym_fact(j2+m2)*sym_fact(j2-m2)* ...
sym_fact(j3+m3)*sym_fact(j3-m3);
tri_coeff = sym_fact(j1 + j2 - j3)*sym_fact(j1 - j2 + j3)*sym_fact(-j1 + j2 + j3)/ ...
sym_fact(j1 + j2 + j3 + 1);
% summation over integers that do not result in negative factorials
Sum_t = sym(0);
for t = 0:N_t
% check factorial for negative values, include in sum if not
if j3-j2+t+m1 >= 0 && j3-j1+t-m2 >=0 && j1+j2-j3-t >= 0 && j1-t-m1 >=0 && j2-t+m2 >= 0
x_t = sym_fact(t)*sym_fact(j1+j2-j3-t)*sym_fact(j3-j2+t+m1)* ...
sym_fact(j3-j1+t-m2)*sym_fact(j1-t-m1)*sym_fact(j2-t+m2);
Sum_t = Sum_t + sym((-1)^t)/x_t;
end
end
w = coeff1*sqrt(coeff2*tri_coeff)*Sum_t;
end
w = simple(w);
function sym_fact = sym_fact(n)
% computes integer factorial in symbolic form
if n == 0
sym_fact = sym(1);
end
if n > 0
sym_fact = prod(sym(1):sym(n));
end
if n < 0
error('the integer n in the factorial should be positive')
end