-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatac_sketch_analysis.R
201 lines (149 loc) · 5.2 KB
/
atac_sketch_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
if (!require('pacman')) install.packages("pacman")
# Load contributed packages with pacman
pacman::p_load(pacman, Seurat, SeuratObject, Signac,
tidyverse, shiny, DT, shinyFiles, shinyWidgets,
Rsamtools, patchwork, biovizBase, GenomeInfoDb,
EnsDb.Hsapiens.v75, EnsDb.Hsapiens.v79, hdf5r,
EnsDb.Mmusculus.v79, BiocManager)
load_data <- function(matrix, scfile, fragments, min.cells = 5, min.features = 200){
metadata <- read.csv(
file = scfile,
header = TRUE,
row.names = 1
)
chrom_assay <- CreateChromatinAssay(
counts = matrix,
sep = c(":", "-"),
genome = 'hg19',
fragments = fragments,
min.cells = min.cells,
min.features = min.features
)
data <- CreateSeuratObject(
counts = chrom_assay,
assay = "peaks",
meta.data = metadata
)
return(data)
}
load_rnaseq <- function(path){
data <- readRDS(path)
return(data)
}
add_annotations <- function(data, db = EnsDb.Hsapiens.v75){
annotations <- GetGRangesFromEnsDb(ensdb = db)
seqlevelsStyle(annotations) <- 'UCSC'
Annotation(data) <- annotations
return(data)
}
filter_dataset <- function(data, min.peak = 3000, max.peak = 20000, pct.reads = 15,
pct.blacklist = 5, nuc.signal = 4, tss.enrich = 2){
obj <- subset(
x = data,
subset = peak_region_fragments > min.peak &
peak_region_fragments < max.peak &
pct_reads_in_peaks > pct.reads &
blacklist_ratio < pct.blacklist /100 &
nucleosome_signal < nuc.signal &
TSS.enrichment > tss.enrich
)
return(obj)
}
normalise_dataset <- function(data, enrichment = 2, signal = 4){
# compute nucleosome signal score per cell
data <- NucleosomeSignal(object = data)
# compute TSS enrichment score per cell
data <- TSSEnrichment(object = data, fast = FALSE)
# add blacklist ratio and fraction of reads in peaks
data$pct_reads_in_peaks <- data$peak_region_fragments / data$passed_filters * 100
data$blacklist_ratio <- data$blacklist_region_fragments / data$peak_region_fragments
data$high.tss <- ifelse(data$TSS.enrichment > enrichment, 'High', 'Low')
minimum <- paste("NS >", as.character(signal))
maximum <- paste("NS < ", as.character(signal))
data$nucleosome_group <- ifelse(data$nucleosome_signal > signal, minimum, maximum)
return(data)
}
linear_dim_reduction <- function(data, min.cutoff = "q0"){
obj <- RunTFIDF(data)
obj <- FindTopFeatures(obj, min.cutoff = min.cutoff)
obj <- RunSVD(obj)
return(obj)
}
nonlinear_dim_reduction <- function(data, algorithm = 3, ndims = 30){
obj <- RunUMAP(object = data, reduction = 'lsi', dims = 2:ndims)
obj <- FindNeighbors(object = obj, reduction = 'lsi', dims = 2:ndims)
obj <- FindClusters(object = obj, verbose = FALSE, algorithm = algorithm)
return(obj)
}
get_gene_activities <- function(data, strategy = "LogNormalize"){
gene.activities <- GeneActivity(data)
# add the gene activity matrix to the Seurat object as a new assay and normalize it
data[['RNA']] <- CreateAssayObject(counts = gene.activities)
obj <- NormalizeData(
object = data,
assay = 'RNA',
normalization.method = strategy,
scale.factor = median(data$nCount_RNA)
)
DefaultAssay(obj) <- 'RNA'
return(obj)
}
integrate_rnaseq <- function(seurat_atac, seurat_rna, ndims = 30){
transfer.anchors <- FindTransferAnchors(
reference = seurat_rna,
query = seurat_atac,
reduction = 'cca'
)
predicted.labels <- TransferData(
anchorset = transfer.anchors,
refdata = seurat_rna$celltype,
weight.reduction = seurat_atac[['lsi']],
dims = 2:ndims
)
data <- AddMetaData(object = seurat_atac, metadata = predicted.labels)
return(data)
}
diff_accessibility <- function(data){
# change back to working with peaks instead of gene activities
DefaultAssay(data) <- 'peaks'
da_peaks <- FindMarkers(
object = data,
ident.1 = "CD4 Naive",
ident.2 = "CD14 Mono",
test.use = 'LR',
latent.vars = 'peak_region_fragments'
)
return(da_peaks)
}
peaks <- Read10X_h5(filename = "data/scatac-seq/atac_v1_pbmc_10k_filtered_peak_bc_matrix.h5")
data <- load_data(peaks,
scfile = "data/scatac-seq/atac_v1_pbmc_10k_singlecell.csv",
fragments = "data/scatac-seq/atac_v1_pbmc_10k_fragments.tsv.gz")
data <- add_annotations(data)
nm_seurat <- normalise_dataset(data)
subset_seurat <- filter_dataset(nm_seurat)
subset_seurat <- linear_dim_reduction(subset_seurat)
subset_seurat <- nonlinear_dim_reduction(subset_seurat)
subset_seurat <- get_gene_activities(subset_seurat)
rnaseq <- load_rnaseq("data/scatac-seq/pbmc_10k_v3.rds")
subset_seurat <- integrate_rnaseq(subset_seurat, rnaseq)
subset_seurat <- subset(subset_seurat, idents = 14, invert = TRUE)
subset_seurat <- RenameIdents(
object = subset_seurat,
'0' = 'CD14 Mono',
'1' = 'CD4 Memory',
'2' = 'CD8 Effector',
'3' = 'CD4 Naive',
'4' = 'CD14 Mono',
'5' = 'DN T',
'6' = 'CD8 Naive',
'7' = 'NK CD56Dim',
'8' = 'pre-B',
'9' = 'CD16 Mono',
'10' = 'pro-B',
'11' = 'DC',
'12' = 'NK CD56bright',
'13' = 'pDC'
)
da_peaks <- diff_accessibility(subset_seurat)
saveRDS(subset_seurat, file = "data/scatac-seq/atac-seq-object.rds")