-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSparseLDA_Speed.hpp
716 lines (681 loc) · 18.2 KB
/
SparseLDA_Speed.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
/*
* SparseLDA.hpp
*
* Created on: 25/12/2013
* Author: polymorpher
*/
#pragma once
#include "ILDA.hpp"
#include<glog/logging.h>
#include<boost/format.hpp>
#include<boost/algorithm/string.hpp>
using boost::format;
namespace AliasLDA {
class SparseLDA_Speed: public AliasLDA::ILDA {
friend class LDA;
//basic
VecInt nk;
VecInt nw;
Vector2DInt docs;
Vector2DInt z; //Topic assignment
int K; //numTopics
int V; //sizeVocabulary
//bitshifting
int oneWithTopicBitShift;
int topicBitShift;
int topicMask;
int auxillaryMask;
Vector2DInt nwkSparse;//Awesome SparseLDA special data structure
Vector2DInt nwkIndex; //Indexing nwkSparse
VecInt nwkLimits;
Vector2DInt ndkSparse;
Vector2DInt ndkIndex;
VecInt ndkLimits;
//bucket stuff
double bucket_s;
double bucket_r;
double bucket_q;
VecDouble bucket_s_values;
VecDouble bucket_r_values;
VecInt bucket_r_indices;
int bucket_r_index_size;
VecInt bucket_r_indices_indices;
VecDouble bucket_q_values;
VecDouble bucket_q_coeff;
VecDouble bucket_q_coeff_enhanced;
VecInt bucket_q_indices;
int bucket_q_index_size;
//priors
double beta;
double alpha;
//Non-uniform Prior
//VecDouble betaVec;
VecDouble alphaVec;
//Common between unifrom and non-unifrom prior
double betasum;
double alphasum;
//rand
std::mt19937_64 rgen;
std::uniform_real_distribution<double> u01;
//results
Vector2DDouble phi;
Vector2DDouble theta;
VecDouble thetasum;
//temp buffer
int sampleFlagCount[3];
public:
SparseLDA_Speed() :
K(0), V(0), beta(0.1)/*,alpha(0.1)*/, betasum(0), alphasum(0), u01(
0, 1) {
rgen.seed(time(NULL)+rand());
}
inline double rand01() {
return u01(rgen);
}
inline int randInt(int limit) {
return (int) (rand01() * limit);
}
void initialiseWordCount(){
for(int d=0;d<docs.size();d++){
for(int l=0;l<docs[d].size();l++){
nw[docs[d][l]]++;
}
}
}
void initialiseWordTopicCounter(){
nwkSparse.resize(V);
nwkIndex.resize(V);
for(int w=0;w<V;w++){
// nwkSparse[w].resize(std::min(V,nw[w]));
nwkSparse[w].reserve(std::min(V,nw[w]));
nwkIndex[w].resize(K);
for(int k=0;k<K;k++){
nwkIndex[w][k]=0;
}
}
}
void initialiseDocumentTopicCounter(){
ndkSparse.resize(docs.size());
ndkIndex.resize(docs.size());
for(int d=0;d<docs.size();d++){
//ndkSparse[d].resize(std::min((int)docs[d].size(),K));
ndkSparse[d].reserve(std::min((int)docs[d].size(),K));
ndkIndex[d].resize(K);
for(int k=0;k<K;k++){
ndkIndex[d][k]=0;
}
}
}
void initialise() {
initialiseBeta();
initialiseAlpha();
nw.resize(V);
initialiseWordCount();
initialiseWordTopicCounter();
initialiseAssignmentOnly();
}
virtual void initialiseAssignmentOnly(){
initialiseBitShifts();
initialiseDocumentTopicCounter();
thetasum.resize(K);
bucket_q_coeff.resize(K);
bucket_q_coeff_enhanced.resize(K);
bucket_q_values.resize(K);
bucket_s_values.resize(K);
bucket_q_indices.resize(K);
bucket_r_values.resize(K);
bucket_r_indices.resize(K);
bucket_r_indices_indices.resize(K);
sampleFlagCount[0]=0;
sampleFlagCount[1]=0;
sampleFlagCount[2]=0;
initialiseTopicsAndCounts();
}
void initialiseTopicsAndCounts() {
z.resize(docs.size());
LOG(INFO)<<"K="<<K;
nk.resize(K);
for (size_t d = 0; d < docs.size(); d++) {
VecInt& doc = docs[d];
z[d].resize(doc.size());
VecInt& zd = z[d];
for (size_t l = 0; l < doc.size(); l++) {
int w = doc[l];
int k = randInt(K);
inc_ndk(d, k);
inc_nwk(w, k);
zd[l] = k;
}
}
}
void initialiseBeta() {
betasum = beta * V;
}
void initialiseAlpha() {
alphasum = alpha*K;
alphaVec.resize(K);
for(int i=0;i<alphaVec.size();i++){
alphaVec[i]=alpha;
}
}
inline int getnwk(int w, int k){
int index=nwkIndex[w][k];
return index<=0?0:decodeCount(nwkSparse[w][index-1]);
}
inline int getndk(int d,int k){
int index=ndkIndex[d][k];
return index<=0?0:decodeCount(ndkSparse[d][index-1]);
}
void initialiseBitShifts() {
topicBitShift = 0;
topicMask = 0;
auxillaryMask = 0;
oneWithTopicBitShift = 1;
while (oneWithTopicBitShift <= K - 1) {
topicMask += oneWithTopicBitShift;
oneWithTopicBitShift = oneWithTopicBitShift << 1;
topicBitShift++;
}
auxillaryMask = ~topicMask;
// printf("topicBitShift=%x topicMask=%x, auxillaryMask=%x, oneWithTopicBitShift=%x\n ",
// topicBitShift, topicMask, auxillaryMask, oneWithTopicBitShift);
}
inline void inc_ndk(int d, int k) {
int index = ndkIndex[d][k] - 1;
if (index < 0) {
ndkSparse[d].push_back(oneWithTopicBitShift | k);
index = ndkSparse[d].size() - 1;
ndkIndex[d][k] = index + 1;
} else {
incEncodedTopic (ndkSparse[d][index]);
}
oneStepSortInc(ndkIndex[d], ndkSparse[d], index);
}
inline bool dec_ndk(int d, int k) {
int index = ndkIndex[d][k] - 1;
CHECK(index >= 0);
CHECK(ndkSparse[d][index] >= 0);
decEncodedTopic (ndkSparse[d][index]);
CHECK(ndkSparse[d].size() > index);
return oneStepSortDec(ndkIndex[d], ndkSparse[d], index);
}
inline void inc_nwk(int w, int k) {
int index = nwkIndex[w][k] - 1;
if (index < 0) {
nwkSparse[w].push_back(oneWithTopicBitShift | k);
index = nwkSparse[w].size() - 1;
nwkIndex[w][k] = index + 1;
} else {
incEncodedTopic (nwkSparse[w][index]);
}
nk[k]++;
oneStepSortInc(nwkIndex[w], nwkSparse[w], index);
}
inline bool dec_nwk(int w, int k) {
int index = nwkIndex[w][k] - 1;
CHECK(index != -1);
CHECK(nwkSparse[w][index] >= 0);
decEncodedTopic (nwkSparse[w][index]);
nk[k]--;
return oneStepSortDec(nwkIndex[w], nwkSparse[w], index);
}
inline int encodeTopic(int topic, int count) {
return (count << topicBitShift) | topic;
}
inline int decodeTopic(int composite) {
return composite & topicMask;
}
inline int decodeCount(int composite) {
return (composite & auxillaryMask) >> topicBitShift;
}
inline void incEncodedTopic(int& composite) {
composite += oneWithTopicBitShift;
}
inline void decEncodedTopic(int& composite) {
composite -= oneWithTopicBitShift;
}
void printCompositeVec(VecInt& vec) {
for (int i = 0; i < vec.size(); i++) {
printf("[%d,%d] ", decodeTopic(vec[i]), decodeCount(vec[i]));
}
printf("\n");
}
void oneStepSortInc(VecInt& m, VecInt& vec, const int index) {
int val = vec[index];
int topic = decodeTopic(val);
int count = decodeCount(val);
int iterIndex = index - 1;
//printf("iterindex=%d\n",iterIndex);
while (iterIndex >= 0) {
if (decodeCount(vec[iterIndex]) >= count) {
break;
}
iterIndex--;
}
iterIndex++;
//printf("iterindex=%d\n",iterIndex);
int swappedTopic = decodeTopic(vec[iterIndex]);
vec[index] = vec[iterIndex];
vec[iterIndex] = val;
m[swappedTopic] = index + 1;
m[topic] = iterIndex + 1;
}
bool oneStepSortDec(VecInt& m, VecInt& vec, int index) {
CHECK(index < vec.size());
int val = vec[index];
int topic = decodeTopic(val);
int count = decodeCount(val);
if (count == 0) {
// printf("erasing index=%d topic=%d\n",index,topic);
// printf("currContentIndex=");printIndexMap(m);
// printf("currContentVec=");printCompositeVec(vec);
int iterIndex = vec.size() - 1;
int newval = vec[iterIndex];
vec[index] = newval;
m[decodeTopic(newval)] = index + 1;
m[topic] = 0;
vec[iterIndex]=0;
vec.resize(iterIndex);
// printf("afterContentIndex=");printIndexMap(m);
// printf("afterContentVec=");printCompositeVec(vec);
return true;
} else {
int iterIndex = index + 1;
while (iterIndex < vec.size()) {
if (decodeCount(vec[iterIndex]) <= count) {
break;
}
iterIndex++;
}
iterIndex--;
int swappedTopic = decodeTopic(vec[iterIndex]);
vec[index] = vec[iterIndex];
vec[iterIndex] = val;
m[swappedTopic] = index + 1;
m[topic] = iterIndex + 1;
return false;
}
}
void computeBucketS(){
bucket_s=0;
for(int k=0;k<K;k++){
double val=(alpha*beta)/(double)(betasum+nk[k]);
bucket_s+=val;
bucket_s_values[k]=val;
}
}
inline void updateBucketS(int k){
bucket_s-=bucket_s_values[k];
double newval=(alpha*beta)/(double)(betasum+nk[k]);
bucket_s+=newval;
bucket_s_values[k]=newval;
}
void computeBucketR(int d){
bucket_r=0;
bucket_r_index_size=0;
for(int i=0;i<K;i++){
bucket_r_indices_indices[i]=0;
}
//for(auto it=ndkSparse[d].begin();it!=ndkSparse[d].end();it++){
VecInt& ndkSparseLocal=ndkSparse[d];
for(int i=0;i<ndkSparseLocal.size();i++){
//int encodedValue=*it;
int encodedValue=ndkSparseLocal[i];
int topic=decodeTopic(encodedValue);
int count=decodeCount(encodedValue);
CHECK(!(topic<=0&&count<=0));
double val=(count*beta)/(double)(betasum+nk[topic]);
bucket_r+=val;
bucket_r_values[topic]=val;
bucket_r_indices[bucket_r_index_size]=topic;
bucket_r_indices_indices[topic]=bucket_r_index_size+1;
// printf("%d bucket_r oval=%d topic=%d count=%d val=%lf bucket_r_index_size=%d\n"
// ,d,encodedValue,topic,count,val,bucket_r_index_size);
bucket_r_index_size++;
}
}
inline void updateBucketR(int d,int k, bool removed_ndk){
int index = bucket_r_indices_indices[k] - 1;
// CHECK(index>=0);
if (index < 0 ) {
double newval = (getndk(d,k) * beta) / (double) (betasum + nk[k]);
CHECK(!removed_ndk);
bucket_r += newval;
// printf("update %d %d, 1add %lf\n", d, k, newval);
CHECK(bucket_r_index_size < K);
bucket_r_values[k]=newval;
bucket_r_indices[bucket_r_index_size] = k;
bucket_r_indices_indices[k] = bucket_r_index_size + 1;
bucket_r_index_size++;
CHECK(bucket_r_index_size<=K);
} else {
if(bucket_r_indices[index]!=k){
LOG(INFO)<<format("%1% bucket_r_indices[index]=%2%, k=%3%") % d % bucket_r_indices[index] % k;
CHECK(bucket_r_indices[index]==k);
}
bucket_r -= bucket_r_values[k];
// printf("update %d %d, subtracting %lf\n", d, k, bucket_r_values[k]);
// CHECK(bucket_r >= 0.0);
if(bucket_r<=0){
// LOG(INFO)<<"bucket_r=="<<bucket_r;
bucket_r=0;
}
if (!removed_ndk) {
double newval = (getndk(d,k) * beta) / (double) (betasum + nk[k]);
bucket_r += newval;
bucket_r_values[k] = newval;
// printf("update %d %d, 2add %lf count=%d\n", d, k, newval,count);
} else {
// printf("update %d %d, removing %lf\n", d, k, bucket_r_values[k]);
bucket_r_values[k] = 0;
double newTopic=bucket_r_indices[bucket_r_index_size - 1];
bucket_r_indices[index]=newTopic;
bucket_r_indices[bucket_r_index_size - 1]=-1;
bucket_r_indices_indices[newTopic] = index+1;
bucket_r_indices_indices[k] = 0;
CHECK(bucket_r_index_size>=1);
bucket_r_index_size--;
}
}
}
void computeBucketQCoeffConst(){
for(int k=0;k<K;k++){
double val=alpha/(double)(betasum+nk[k]);
bucket_q_coeff[k]=val;
bucket_q_coeff_enhanced[k]=val;
//printf("computeBucketQCoeff: bucket_q_coeff_enhanced[%d]=%lf\n",k,val);
}
}
void computeBucketQCoeffRemaining(int d){
//for(auto it=ndkSparse[d].begin();it!=ndkSparse[d].end();it++){
VecInt& ndkLocal=ndkSparse[d];
for(int i=0;i<ndkLocal.size();i++){
//int encodedValue=*it;
int encodedValue=ndkLocal[i];
int topic=decodeTopic(encodedValue);
int count=decodeCount(encodedValue);
CHECK(!(topic==0&&count==0));
bucket_q_coeff_enhanced[topic]+=count/(double)(betasum+nk[topic]);
//printf("ndksparse[%d][%d]=%d,bucket_q_coeff_enhanced[%d]=%lf\n",d,k,val,k,bucket_q_coeff_enhanced[k]);
}
}
void resetBucketQCoeffRemaining(int d){
for(int k=0;k<K;k++){
bucket_q_coeff_enhanced[k]=bucket_q_coeff[k];
}
}
inline void updateBucketQCoeffAll(int d, int k, bool removed_ndk){
double val=alpha/(double)(betasum+nk[k]);
bucket_q_coeff[k]=val;
if(removed_ndk){
bucket_q_coeff_enhanced[k]=val;
}else{
bucket_q_coeff_enhanced[k]=val + (getndk(d,k)/(double)(betasum+nk[k]));
}
}
void computeBucketQValues(int d, int w){
VecInt& nwkSparseLocal=nwkSparse[w];
bucket_q_index_size=0;
bucket_q=0;
//for(auto it=nwkSparseLocal.begin();it!=nwkSparseLocal.end();it++){
for(int i=0;i<nwkSparseLocal.size();i++){
//int val=*it;
int val=nwkSparseLocal[i];
int topic=decodeTopic(val);
int count=decodeCount(val);
CHECK(!(topic==0&&count==0));
double qval=bucket_q_coeff_enhanced[topic]*count;
// printf("oval=%d, topic=%d, count=%d,bucket_q_coeff_enhanced[%d]=%lf, bucket_q_values[%d]=%lf\n"
// ,val,topic,count,topic,bucket_q_coeff_enhanced[topic],bucket_q_index_size,qval);
bucket_q_indices[bucket_q_index_size]=topic;
bucket_q_values[bucket_q_index_size]=qval;
bucket_q_index_size++;
bucket_q+=qval;
}
}
int sampleFromBucketQ(int d, int l, double roll){
int newTopic = -1;
for (int i = 0; i < bucket_q_index_size; i++) {
double prob = bucket_q_values[i];
// double prob =
// printf("prob=%lf\n",prob);
if (roll <= prob) {
newTopic = bucket_q_indices[i];
break;
} else {
roll -= prob;
// printf("roll=%lf\n",roll);
}
}
return newTopic;
}
int sampleFromBucketR(int d,int l,double roll){
int newTopic=-1;
//for(auto it=bucket_r_values.begin();it!=bucket_r_values.end();it++){
for(int i=0;i<bucket_r_index_size;i++){
int topic=bucket_r_indices[i];
double prob=bucket_r_values[topic];
if(roll<=prob){
newTopic=topic;
break;
}else{
roll-=prob;
}
}
return newTopic;
}
int sampleFromBucketS(int d,int l,double roll){
int newTopic=-1;
for (int i = 0; i < K; i++) {
double sval = bucket_s_values[i];
if (roll <= sval) {
newTopic = i;
break;
} else {
roll -= sval;
}
}
return newTopic;
}
virtual void sampleWord(int d, int l) {
int w = docs[d][l];
int k = z[d][l];
bool removed_ndk=dec_ndk(d, k);
bool removed_nwk=dec_nwk(w, k);
updateBucketS(k);
updateBucketR(d,k,removed_ndk);
updateBucketQCoeffAll(d,k,removed_ndk);
double sump = 0;
if(removed_nwk){
// VecInt& nwkSparseLocal=nwkSparse[w];
// CHECK(getnwk(w,k)==0);
// CHECK(nwkSparseLocal.size()==0);
computeBucketQValues(d,w);
// double vv=0.0;
// if(bucket_q>0){
// LOG(INFO)<<"bucket_q="<<bucket_q;
// LOG(INFO)<<nwkSparseLocal.size();
// CHECK(bucket_q<0.00000001L);
// }
sump=bucket_q+bucket_s+bucket_r;
}else{
computeBucketQValues(d,w);
sump=bucket_s+bucket_r+bucket_q;
}
double roll = rand01() * sump;
double originalRoll=roll;
int newTopic = -1;
int flag=-1;
// if((!removed_nwk) &&roll<=bucket_q){
if(roll<=bucket_q){
flag=0;
newTopic=sampleFromBucketQ(d,l,roll);
}else{
roll-=bucket_q;
if(roll<=bucket_r){
flag=1;
newTopic=sampleFromBucketR(d,l,roll);
}else{
roll -= bucket_r;
if (roll <= bucket_s) {
flag = 2;
newTopic=sampleFromBucketS(d,l,roll);
}
}
}
sampleFlagCount[flag]++;
// if (abs(r) <= 0.0001 && newTopic == -1) {
// newTopic = K - 1;
// }
// if(newTopic==-1 || flag==-1){
// printf("removed_nwk=%d, d=%d,l=%d | flag=%d q=%.14lf r=%.14lf s=%.14lf roll=%.14lf oroll=%.14lf newtopic=%d\n",
// removed_nwk,d,l,flag,bucket_q,bucket_r,bucket_s,roll, originalRoll,newTopic);
// }
CHECK(newTopic != -1);
inc_ndk(d, newTopic);
inc_nwk(w, newTopic);
updateBucketS(newTopic);
updateBucketR(d,newTopic,false);
updateBucketQCoeffAll(d,newTopic,false);
z[d][l] = newTopic;
}
virtual void gibbsStep() {
computeBucketS();
computeBucketQCoeffConst();
for (size_t d = 0; d < docs.size(); d++) {
computeBucketR(d);
computeBucketQCoeffRemaining(d);
VecInt& doc = docs[d];
for (size_t l = 0; l < doc.size(); l++) {
sampleWord(d, l);
}
resetBucketQCoeffRemaining(d);
}
for(int i=0;i<3;i++){
LOG(INFO)<<format("flags %1%=%2%") % i % sampleFlagCount[i];
sampleFlagCount[i]=0;
}
}
virtual void computePhi() {
phi.resize(V);
for (int w = 0; w < V; w++) {
phi[w].resize(K);
for (int k = 0; k < K; k++) {
phi[w][k] = (getnwk(w, k) + beta) / (double) (nk[k] + betasum);
}
}
}
virtual void computeThetaSum() {
for (int k = 0; k < K; k++) {
thetasum[k] = 0;
}
for (size_t d = 0; d < docs.size(); d++) {
for (int k = 0; k < K; k++) {
double val = (getndk(d, k) + alpha)
/ (double) (docs[d].size() + alphasum);
thetasum[k] += val / (double) docs.size();
}
}
}
virtual void computeTheta() {
theta.resize(docs.size());
for (size_t d = 0; d < docs.size(); d++) {
theta[d].resize(K);
for(int k=0;k<K;k++){
theta[d][k]=(getndk(d,k)+alpha)/(double)(docs[d].size()+alphasum);
}
}
}
//getters and setters
virtual void setDocuments(Vector2DInt& docs) {
this->docs.resize(docs.size());
for (size_t i = 0; i < docs.size(); i++) {
auto& doc = this->docs[i];
auto& thisdoc = docs[i];
doc.resize(docs[i].size());
for (size_t j = 0; j < thisdoc.size(); j++) {
doc[j] = thisdoc[j];
//printf("%d ",thisdoc[j]);
}
}
//this->docs=docs;
}
// double getAlpha() const {
// return alpha;
// }
//
// void setAlpha(double alpha) {
// this->alpha = alpha;
// }
virtual const VecDouble& getAlphaVec() const {
return alphaVec;
}
virtual void setAlphaVec(const VecDouble& alphaVec) {
this->alphaVec = alphaVec;
}
virtual void setAlpha(double alpha) {
this->alpha = alpha;
}
virtual double getBeta() const {
return beta;
}
virtual void setBeta(double beta) {
this->beta = beta;
}
virtual void setNumTopics(int K) {
this->K = K;
}
virtual void setSizeVocabulary(int V) {
this->V = V;
}
virtual const Vector2DDouble& getPhi() const {
return phi;
}
virtual const Vector2DDouble& getTheta() const {
return theta;
}
virtual const VecDouble& getThetasum() const {
return thetasum;
}
virtual int getNumTopics() const {
return K;
}
virtual const Vector2DInt& getDocuments() const {
return docs;
}
virtual void clearPhi(){
phi.clear();
}
virtual void clearTheta(){
theta.clear();
}
virtual void copyState(ILDA* _lda) {
LOG(INFO)<<"Copying State...";
SparseLDA_Speed* lda = static_cast<SparseLDA_Speed* > ( _lda);
K = lda->K;
V = lda->V;
nk = lda->nk;
nwkSparse = lda->nwkSparse;
nwkIndex=lda->nwkIndex;
beta = lda->beta;
alpha = lda->alpha;
alphasum=lda->alphasum;
alphaVec = lda->alphaVec;
betasum = lda->betasum;
}
virtual void copyState(void* _lda, std::string impl) {
LOG(INFO)<<"Copying State...";
SparseLDA_Speed* lda = static_cast<SparseLDA_Speed* > ( _lda);
K = lda->K;
V = lda->V;
nk = lda->nk;
nwkSparse = lda->nwkSparse;
nwkIndex=lda->nwkIndex;
beta = lda->beta;
alpha = lda->alpha;
alphasum=lda->alphasum;
alphaVec = lda->alphaVec;
betasum = lda->betasum;
}
};
}