-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamazon_json_parser.py
303 lines (262 loc) · 9.04 KB
/
amazon_json_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import json
from copy import deepcopy
from tabulate import tabulate
# from pprint import pprint
# 1 wall
# 2 box
# 3 storage
# 4 robot
# 5 stray
# 1
# 4 0 3
# 2
def init_matrix(rows, cols, count, objects):
# first index col, second index row
matrix = [[0 for i in range(cols)] for j in range(rows)]
index = 0
while index < 3*count:
matrix[objects[index + 2]][objects[index + 1]] = objects[index]
index += 3
return matrix
def prep_bfs(matrix, init):
for i, row in enumerate(matrix):
for j, elem in enumerate(row):
if elem == 1 or elem == 2:
matrix[i][j] = -1
else:
matrix[i][j] = 100
matrix[init[0]][init[1]] = 0
return matrix
def bfs(matrix, init):
visit = [init]
while visit:
# print(tabulate(matrix))
current = visit.pop(0)
i, j = current[0], current[1]
if matrix[i-1][j] > matrix[i][j]:
matrix[i-1][j] = matrix[i][j] + 1
visit.append((i-1, j))
if matrix[i+1][j] > matrix[i][j]:
matrix[i+1][j] = matrix[i][j] + 1
visit.append((i+1, j))
if matrix[i][j-1] > matrix[i][j]:
matrix[i][j-1] = matrix[i][j] + 1
visit.append((i, j-1))
if matrix[i][j+1] > matrix[i][j]:
matrix[i][j+1] = matrix[i][j] + 1
visit.append((i, j+1))
def bfs_targeted(matrix, init, dest):
visit = [init]
while matrix[dest[0]][dest[1]] >= 100:
# print(tabulate(matrix))
try:
current = visit.pop(0)
except IndexError:
return False
i, j = current[0], current[1]
if matrix[i-1][j] > matrix[i][j]:
matrix[i-1][j] = matrix[i][j] + 1
visit.append((i-1, j))
if matrix[i+1][j] > matrix[i][j]:
matrix[i+1][j] = matrix[i][j] + 1
visit.append((i+1, j))
if matrix[i][j-1] > matrix[i][j]:
matrix[i][j-1] = matrix[i][j] + 1
visit.append((i, j-1))
if matrix[i][j+1] > matrix[i][j]:
matrix[i][j+1] = matrix[i][j] + 1
visit.append((i, j+1))
return True
def opposite(dir):
if dir == 1:
return 2
elif dir == 2:
return 1
elif dir == 3:
return 4
elif dir == 4:
return 3
else:
return -1
def apply_corrections(moves):
i = 0
while i < len(moves)-1:
if (moves[i] in [1, 2] and moves[i+1] in [3, 4]) or \
(moves[i] in [3, 4] and moves[i+1] in [1, 2]):
moves.insert(i+1, opposite(moves[i+1]))
moves.insert(i+2, moves[i])
i += 3
else:
i += 1
def find_moves(matrix, box, target, do_corrections):
current = target
moves = []
while current != box:
try:
i, j = current[0], current[1]
if matrix[i-1][j] < matrix[i][j] and matrix[i-1][j] >= 0:
moves.append(2)
current = (i-1, j)
elif matrix[i+1][j] < matrix[i][j] and matrix[i+1][j] >= 0:
moves.append(1)
current = (i+1, j)
elif matrix[i][j-1] < matrix[i][j] and matrix[i][j-1] >= 0:
moves.append(3)
current = (i, j-1)
elif matrix[i][j+1] < matrix[i][j] and matrix[i][j+1] >= 0:
moves.append(4)
current = (i, j+1)
# print(current)
except IndexError:
pass
if do_corrections:
moves.reverse()
apply_corrections(moves)
return moves
def get_pos_related_to_box(last_move, box):
if last_move == 1:
pos = (box[0] + 1, box[1])
elif last_move == 2:
pos = (box[0] - 1, box[1])
elif last_move == 3:
pos = (box[0], box[1] - 1)
elif last_move == 4:
pos = (box[0], box[1] + 1)
else:
raise AttributeError
return pos
def track_moves(matrix, moves, box):
robot = get_pos_related_to_box(moves[0], box)
starting_position = robot
# print("here for: ", robot)
if matrix[robot[0]][robot[1]] == -1:
return (False, robot, starting_position)
for mv in moves:
prev_robot = deepcopy(robot)
if mv == 1:
robot = (robot[0] - 1, robot[1])
elif mv == 2:
robot = (robot[0] + 1, robot[1])
elif mv == 3:
robot = (robot[0], robot[1] + 1)
elif mv == 4:
robot = (robot[0], robot[1] - 1)
if matrix[robot[0]][robot[1]] == -1:
return (False, prev_robot, starting_position)
return (True, prev_robot, starting_position)
def update_gold(gold_matrix, last_move, new_box, old_box, old_robot):
new_robot = get_pos_related_to_box(last_move, new_box)
gold_matrix[old_box[0]][old_box[1]] = 0
gold_matrix[old_robot[0]][old_robot[1]] = 0
gold_matrix[new_box[0]][new_box[1]] = 1
gold_matrix[new_robot[0]][new_robot[1]] = 4
def compute_moves(input_rows, input_cols, input_objects_count, input_objects):
gold_matrix = init_matrix(input_rows, input_cols,
input_objects_count, input_objects)
# pprint_map(gold_matrix)
robot = (objects[2], objects[1])
boxes = [(i, j)
for i in range(rows)
for j in range(cols)
if gold_matrix[i][j] == 2]
storages = [(i, j)
for i in range(rows)
for j in range(cols)
if gold_matrix[i][j] == 3]
for box in boxes:
valid_moves = False
local_gold = deepcopy(gold_matrix)
max_iterations = 0
while not valid_moves and max_iterations < 3:
matrix = prep_bfs(deepcopy(local_gold), box)
# print(tabulate(matrix))
bfs(matrix, box)
min_storage = 300
target = (0, 0)
for storage in storages:
if min_storage > matrix[storage[0]][storage[1]]:
min_storage = matrix[storage[0]][storage[1]]
target = storage
# print(tabulate(matrix))
print(str(box) + " -> " + str(target))
if (min_storage == 100):
max_iterations += 1
continue
moves = find_moves(matrix, box, target, True)
# moves are reversed here
# print(moves)
(valid_moves, wall, starting_pos) = track_moves(matrix, moves,
deepcopy(box))
moves.reverse()
if not valid_moves:
# print("new wall: ", wall)
local_gold[wall[0]][wall[1]] = 1
max_iterations += 1
if not valid_moves:
print("could not find moves")
else:
# print("valid moves: ", moves)
# move robot from current position to near the box
matrix = prep_bfs(deepcopy(gold_matrix), robot)
if bfs_targeted(matrix, robot, starting_pos):
print(matrix[starting_pos[0]][starting_pos[1]])
robot_moves = find_moves(matrix, robot, starting_pos, False)
moves += robot_moves
print("full moves: ", moves)
update_gold(gold_matrix, moves[0], target, box, robot)
robot = get_pos_related_to_box(moves[0], target)
print(tabulate(gold_matrix))
storages.remove(target)
else:
print("game over")
def pprint_map(curr_map):
for row in curr_map:
print("\n", end="")
for elem in row:
print(elem, end="")
print("\n")
def getXobj(concept):
return concept["position"]["x"]
def getYobj(concept):
return concept["position"]["y"]
def getX(game, concept):
return game[concept]["position"]["x"]
def getY(game, concept):
return game[concept]["position"]["y"]
with open('05_intoTheDarkness.txt') as data_file:
data = json.load(data_file)
index = 1
for game in data:
print("HARTA " + str(index))
objects = []
index += 1
rows = game["rows"]
cols = game["cols"]
curr_map = [["." for j in range(cols)] for i in range(rows)]
# set player
curr_map[getY(game, "player")][getX(game, "player")] = "@"
objects.extend((4, getX(game, "player"), getY(game, "player")))
obj_count = 1
try:
# set adversary
curr_map[getY(game, "adversary")][getX(game, "adversary")] = "#"
objects.extend((5, getX(game, "adversary"), getY(game, "adversary")))
obj_count += 1
except KeyError as err:
print("No adversary")
# set objects
for obj in game["objects"]:
obj_count += 1
ident = "W"
if obj["type"] == "Box":
ident = "B"
objects.extend((2, getXobj(obj), getYobj(obj)))
elif obj["type"] == "Storage":
ident = "S"
objects.extend((3, getXobj(obj), getYobj(obj)))
else:
ident = "W" # redundant, but more visible
objects.extend((1, getXobj(obj), getYobj(obj)))
curr_map[getYobj(obj)][getXobj(obj)] = ident
pprint_map(curr_map)
moves = compute_moves(rows, cols, obj_count, objects)