-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrixRankCheck.py
39 lines (37 loc) · 1.07 KB
/
MatrixRankCheck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
COEFF_MATRIX = [
[ 1, 2, 3, 7, 17, 31, 53, 79],
[ -2, 1, 5, 11, 19, 37, 59, 83],
[ -3, -5, 1, 13, 23, 41, 61, 89],
[ -7, -11, -13, 1, 29, 43, 67, 97],
[ -17, -19, -23, -29, 1, 47, 71,101],
[ -31, -37, -41, -43, -47, 1, 73,103],
[ -53, -59, -61, -67, -71, -73, 1,107],
[ -79, -83, -89, -97,-101,-103,-107, 1],
]
def full_rank(matrix):
matrix = [[x for x in y] for y in matrix]
m = len(matrix)
for i in range(m):
for j in range(i):
coeff = matrix[i][j]
for k in range(m):
matrix[i][k] -= coeff * matrix[j][k]
coeff = matrix[i][i];
if (coeff == 0):
return False
for k in range(m):
matrix[i][k] /= coeff
return True
n = len(COEFF_MATRIX)
import itertools
for k in range(2,n+1):
for rows in itertools.combinations(range(n),k):
for cols in itertools.combinations(range(n),k):
matrix = [[x for x in range(k)] for y in range(k)]
for ri, rd in enumerate(rows):
for ci, cd in enumerate(cols):
matrix[ri][ci] = COEFF_MATRIX[rd][cd]
if (not full_rank(matrix)):
print("Rank Check Failed:", matrix)
input()
print("Done!")