-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_outputs.py
137 lines (100 loc) · 4.19 KB
/
generate_outputs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import datetime
import os
import random
import numpy as np
import scipy.misc
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib
import torchvision.transforms as standard_transforms
import torch
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
import matplotlib.pyplot as pyplot
import utils.joint_transforms as joint_transforms
import utils.transforms as extended_transforms
import cityscapes
from utils import check_mkdir, evaluate, AverageMeter, CrossEntropyLoss2d
args = {
'train_batch_size': 1,
'test_batch_size': 1,
'epoch_num': 10,
'lr': 1e-10,
'weight_decay': 5e-4,
'input_size': (256, 512),
'momentum': 0.95,
'snapshot': '', # empty string denotes no snapshot
'print_freq': 20,
'val_batch_size': 2,
'val_save_to_img_file': False,
'val_img_sample_rate': 0.05 # randomly sample some validation results to display
}
# Paths to trained models & epoch counts
DUCHDC_trainedModelPath = './ducModelFinal.pth'
FCN8_trainedModelPath = './fcnModelFinal.pth'
Unet_trainedModelPath = './unetModelFinal.pth'
# Transforms
mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
short_size = int(min(args['input_size']) / 0.875)
joint_transform = joint_transforms.Compose([
joint_transforms.Scale(short_size),
joint_transforms.RandomCrop(args['input_size']),
joint_transforms.RandomHorizontallyFlip()])
input_transform = standard_transforms.Compose([
standard_transforms.ToTensor(),
standard_transforms.Normalize(*mean_std)])
target_transform = extended_transforms.MaskToTensor()
restore_transform = standard_transforms.Compose([
extended_transforms.DeNormalize(*mean_std),
standard_transforms.ToPILImage()])
visualize = standard_transforms.ToTensor()
## Loading the test dataset
test_set = cityscapes.CityScapes('fine', 'test', joint_transform=joint_transform,
transform=input_transform, target_transform=target_transform)
test_loader = DataLoader(train_set, batch_size=args['test_batch_size'], shuffle=False)
# The NETWORK
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = torch.load(DUCHDC_trainedModelPath) ## CHANGE HERE WHEN YOU CHANGE NETWORK
# For Multi GPU
#if torch.cuda.device_count() > 1:
# print("Let's use", torch.cuda.device_count(), "GPUs!")
#net = torch.nn.DataParallel(net, device_ids=[0, 1])
net = net.to(device)
print(net)
criterion = CrossEntropyLoss2d(size_average=False, ignore_index=cityscapes.ignore_label)
optimizer = optim.SGD([
{'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'],
'lr': 2 * args['lr']},
{'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'],
'lr': args['lr'], 'weight_decay': args['weight_decay']}], momentum=args['momentum'])
# Output Images
for vi, data in enumerate(test_loader):
with torch.no_grad():
inputs, gts = data
N = inputs.size(0)
# Sending Variables to gpu
inputs = Variable(inputs).to(device)
gts = Variable(gts).to(device)
#print(np.shape(inputs))
outputs = net(inputs)
prediction = outputs.data.max(1)[1].squeeze_(1).cpu().numpy()
gts = gts.cpu().numpy()
# inputs = inputs.cpu()
#plt.imshow(cityscapes.colorize_mask(gts[0,:,:]))
gts = cityscapes.colorize_mask(gts[0,:,:])
# Save Location Path
root = os.path.join(os.getcwd(),'outputs')
# Saving the ground Truth image
gts.save(os.path.join(root,'gtruth'+str(vi)+'.tif'))
# gts.save('\outputs\gtruth.jpg')
# Saving the predicted image
prediction = cityscapes.colorize_mask(prediction[0,:,:])
#plt.imshow(prediction)
#plt.show()
prediction.save(os.path.join(root,'predicted'+str(vi)+'.tif'))
# prediction.save('predicted.jpg')
# Status of saving
if (vi%100) == 0:
print('%d / %d' % (vi + 1, len(test_loader)))
#break