-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
208 lines (156 loc) · 7.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import datetime
import os
import random
import numpy as np
import scipy.misc
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib
import pickle
import torchvision.transforms as standard_transforms
import torch
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
import matplotlib.pyplot as pyplot
import utils.joint_transforms as joint_transforms
import utils.transforms as extended_transforms
import cityscapes
from fcn8s import *
from duc_hdc import *
from unet import *
from utils import check_mkdir, evaluate, AverageMeter, CrossEntropyLoss2d
args = {
'train_batch_size': 2,
'test_batch_size': 2,
'epoch_num': 1,
'lr': 1e-4,
'weight_decay': 5e-4,
'input_size': (256, 512),
'momentum': 0.95,
'lr_patience': 50, # large patience denotes fixed lr
'snapshot': '', # empty string denotes no snapshot
'print_freq': 20,
'val_batch_size': 2,
'val_save_to_img_file': False,
'val_img_sample_rate': 0.05 # randomly sample some validation results to display
}
# Paths to trained models & epoch counts
'''
Comment the next few lines if training from scratch
'''
DUCHDC_epochCount = "EpochNumDUC.pkl"
FCN8_epochCount = "EpochNumFCN8.pkl"
Unet_epochCount = "EpochNumUnet.pkl"
DUCHDC_trainedModelPath = './ducModelFinal.pth'
FCN8_trainedModelPath = './fcnModelFinal.pth'
Unet_trainedModelPath = './unetModelFinal.pth'
# Transforms
mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
short_size = int(min(args['input_size']) / 0.875)
joint_transform = joint_transforms.Compose([
joint_transforms.Scale(short_size),
joint_transforms.RandomCrop(args['input_size']),
joint_transforms.RandomHorizontallyFlip()])
input_transform = standard_transforms.Compose([
standard_transforms.ToTensor(),
standard_transforms.Normalize(*mean_std)])
target_transform = extended_transforms.MaskToTensor()
restore_transform = standard_transforms.Compose([
extended_transforms.DeNormalize(*mean_std),
standard_transforms.ToPILImage()])
visualize = standard_transforms.ToTensor()
## Loading the datasets
train_set = cityscapes.CityScapes('fine', 'train', joint_transform=joint_transform,
transform=input_transform, target_transform=target_transform)
train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], shuffle=True)
test_set = cityscapes.CityScapes('fine', 'test', joint_transform=joint_transform,
transform=input_transform, target_transform=target_transform)
test_loader = DataLoader(train_set, batch_size=args['test_batch_size'], shuffle=False)
val_set = cityscapes.CityScapes('fine', 'val', joint_transform=joint_transform, transform=input_transform,
target_transform=target_transform)
val_loader = DataLoader(val_set, batch_size=args['val_batch_size'], shuffle=False)
def train(train_loader, net, criterion, optimizer, epoch, train_args):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train_loss = AverageMeter()
curr_iter = len(train_loader)
for i, data in enumerate(train_loader):
inputs, labels = data
assert inputs.size()[2:] == labels.size()[1:]
N = inputs.size(0)
inputs = Variable(inputs).to(2)
labels = Variable(labels).to(2)
optimizer.zero_grad()
outputs = net(inputs)
assert outputs.size()[2:] == labels.size()[1:]
assert outputs.size()[1] == cityscapes.num_classes
loss = criterion(outputs, labels) / N
loss.backward()
optimizer.step()
train_loss.update(loss.data[0], N)
print ('Epoch:',epoch,' train_loss:', train_loss.avg,' Iter:', i ,'/', curr_iter)
def validate(val_loader, net, criterion, optimizer, epoch, train_args, restore, visualize):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
val_loss = AverageMeter()
inputs_all, gts_all, predictions_all = [], [], []
for vi, data in enumerate(val_loader):
with torch.no_grad():
inputs, gts = data
N = inputs.size(0)
inputs = Variable(inputs).to(2)
gts = Variable(gts).to(2)
outputs = net(inputs)
predictions = outputs.data.max(1)[1].squeeze_(1).cpu().numpy()
val_loss.update(criterion(outputs, gts).data[0] / N, N)
for i in inputs:
if random.random() > train_args['val_img_sample_rate']:
inputs_all.append(None)
else:
inputs_all.append(i.data.cpu())
gts_all.append(gts.data.cpu().numpy())
predictions_all.append(predictions)
print ('Epoch: ', epoch, 'Val Iter: ',vi)
# torch.cuda.empty_cache()
gts_all = np.concatenate(gts_all)
predictions_all = np.concatenate(predictions_all)
acc, acc_cls, mean_iu, fwavacc = evaluate(predictions_all, gts_all, cityscapes.num_classes)
print('Epoch: ', epoch,'Val Loss: ',val_loss.avg, 'mean_IoU: ',mean_iu, 'Acc: ',acc, 'acc_cls', acc_cls, 'fwavacc: ', fwavacc)
return val_loss.avg
# The NETWORK
# Get current Epoch Number from prev trained network
EpochNum = pickle.load( open( DUCHDC_epochCount, "rb" ) ) ## CHANGE HERE WHEN YOU CHANGE NETWORK
print ('Total Epoch:' , EpochNum)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
'''
If Training from scratch, choose your required network!!!
'''
#net = DUCHDC(num_classes=cityscapes.num_classes)
#Loading trained Network
net = torch.load(DUCHDC_trainedModelPath) ## CHANGE HERE WHEN YOU CHANGE NETWORK
net = net.to(device)
print(net)
criterion = CrossEntropyLoss2d(size_average=False, ignore_index=cityscapes.ignore_label)
optimizer = optim.SGD([
{'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'],
'lr': 2 * args['lr']},
{'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'],
'lr': args['lr'], 'weight_decay': args['weight_decay']}], momentum=args['momentum'])
optimizerAdam = optim.Adagrad([
{'params': [param for name, param in net.named_parameters() if name[-4:] == 'bias'],
'lr': 2 * args['lr']},
{'params': [param for name, param in net.named_parameters() if name[-4:] != 'bias'],
'lr': args['lr'], 'weight_decay': args['weight_decay']}])
## Use optimizer based on the network
for epoch in range(args['epoch_num'] + 1):
train(train_loader, net, criterion, optimizer, epoch, args)
if epoch > 0:
EpochNum = EpochNum + 1
print ('Total Epoch:' , EpochNum)
if (epoch%5) == 0:
LastEpochNum = EpochNum
pickle.dump( LastEpochNum, open( DUCHDC_epochCount, "wb" ) ) ## CHANGE HERE WHEN YOU CHANGE NETWORK
torch.save(net, DUCHDC_trainedModelPath) ## CHANGE HERE WHEN YOU CHANGE NETWORK
print('Netwrok Saved at :', epoch, 'epoch')
val_loss = validate(val_loader, net, criterion, optimizer, epoch, args, restore_transform, visualize)
scheduler.step(val_loss)
test_loss = validate(test_loader, net, criterion, optimizer, epoch, args, restore_transform, visualize)