-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
78 lines (68 loc) · 2.96 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn.functional as F
from torch import nn
from utils import initialize_weights
class _EncoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, dropout=False):
super(_EncoderBlock, self).__init__()
layers = [
nn.Conv2d(in_channels, out_channels, kernel_size=3),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
]
if dropout:
layers.append(nn.Dropout())
layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
self.encode = nn.Sequential(*layers)
def forward(self, x):
return self.encode(x)
class _DecoderBlock(nn.Module):
def __init__(self, in_channels, middle_channels, out_channels):
super(_DecoderBlock, self).__init__()
self.decode = nn.Sequential(
nn.Conv2d(in_channels, middle_channels, kernel_size=3),
nn.BatchNorm2d(middle_channels),
nn.ReLU(inplace=True),
nn.Conv2d(middle_channels, middle_channels, kernel_size=3),
nn.BatchNorm2d(middle_channels),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(middle_channels, out_channels, kernel_size=2, stride=2),
)
def forward(self, x):
return self.decode(x)
class UNet(nn.Module):
def __init__(self, num_classes):
super(UNet, self).__init__()
self.enc1 = _EncoderBlock(3, 64)
self.enc2 = _EncoderBlock(64, 128)
self.enc3 = _EncoderBlock(128, 256)
self.enc4 = _EncoderBlock(256, 512, dropout=True)
self.center = _DecoderBlock(512, 1024, 512)
self.dec4 = _DecoderBlock(1024, 512, 256)
self.dec3 = _DecoderBlock(512, 256, 128)
self.dec2 = _DecoderBlock(256, 128, 64)
self.dec1 = nn.Sequential(
nn.Conv2d(128, 64, kernel_size=3),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.final = nn.Conv2d(64, num_classes, kernel_size=1)
initialize_weights(self)
def forward(self, x):
enc1 = self.enc1(x)
enc2 = self.enc2(enc1)
enc3 = self.enc3(enc2)
enc4 = self.enc4(enc3)
center = self.center(enc4)
dec4 = self.dec4(torch.cat([center, F.upsample(enc4, center.size()[2:], mode='bilinear')], 1))
dec3 = self.dec3(torch.cat([dec4, F.upsample(enc3, dec4.size()[2:], mode='bilinear')], 1))
dec2 = self.dec2(torch.cat([dec3, F.upsample(enc2, dec3.size()[2:], mode='bilinear')], 1))
dec1 = self.dec1(torch.cat([dec2, F.upsample(enc1, dec2.size()[2:], mode='bilinear')], 1))
final = self.final(dec1)
return F.upsample(final, x.size()[2:], mode='bilinear')