-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_ga.py
280 lines (225 loc) · 9.39 KB
/
new_ga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from django.conf import settings
from dataclasses import dataclass, field
from pandas import DataFrame
import pygad
import numpy
import pandas as pd
from typing import Callable, Dict, Any, List, Optional
from icecream import ic
from order_optimization.container import ModelInterface
from ordplan_project.settings import MIN_TRIM,PENALTY_VALUE
@dataclass
class GA(ModelInterface):
orders: DataFrame
size: float = 66
num_generations: int = 50
out_range: int = 6
showOutput: bool = False
save_solutions: bool = False
showZero: bool = False
selector: Dict[str, Any] | None = None
set_progress: Callable | None = None
current_generation: int = 0
_penalty:int = 0
_penalty_value:int = PENALTY_VALUE
blade:Optional[int] = None
seed:Optional[int] = None
parent_selection_type:str ="tournament"
crossover_type:str ="uniform"
mutation_probability:Optional[List[int]]=None
mutation_percent_genes:List[int] = field(default_factory=lambda: [25,5])
crossover_probability:float=None
def __post_init__(self):
if self.orders is None:
raise ValueError("Orders is empty!")
self.orders = self.orders[self.orders['quantity'] > 0].reset_index(drop=True)
self._paper_size = self.size
self.model = pygad.GA(
num_generations=self.num_generations,
num_parents_mating=60,
fitness_func=self.fitness_function,
sol_per_pop=120,
num_genes=len(self.orders),
gene_type=int,
init_range_low=0,
init_range_high=self.out_range,
parent_selection_type=self.parent_selection_type,
crossover_type=self.crossover_type,
mutation_type="adaptive",
mutation_probability=self.mutation_probability,
mutation_percent_genes=self.mutation_percent_genes,
crossover_probability=self.crossover_probability,
on_generation=self.on_gen,
save_solutions=self.save_solutions,
stop_criteria="saturate_7",
suppress_warnings=True,
random_seed=self.seed
)
def paper_type_logic(self, solution):
init_type = None
orders = self.orders
match orders["edge_type"][self.get_first_solution(solution)]:
case "X":
init_type = 1
case "N":
init_type = 2
case "W":
init_type = 2
if init_type is not None:
for index, out in enumerate(solution):
if out >= 1:
match init_type:
case 1:
if orders["edge_type"][index] not in [
"X",
"Y",
]: # Changed OR to AND condition
self._penalty += self._penalty_value
case 2:
if orders["edge_type"][index] == "X":
self._penalty += self._penalty_value
def least_order_logic(self, solution):
init_order = None
orders = self.orders
init_order = orders["quantity"][self.get_first_solution(solution)]
for index, out in enumerate(solution):
if out >= 1 and orders["quantity"][index] < init_order:
self._penalty += self._penalty_value
@staticmethod
def get_first_solution(solution) -> int:
for index, out in enumerate(solution):
if out >= 1:
return index
return 0
def paper_out_logic(self, solution):
if sum(solution) > 5:
if sum(solution) <= 6:
init = 0
for index, out in enumerate(solution):
if out>=1:
if self.orders['edge_type'][index]=='X' and init==0:
init = 1
continue
if self.orders['edge_type'][index]=='Y' and init==1:
return
self._penalty += self._penalty_value * sum(solution) # ยิ่งเกิน ยิ่ง _penaltyเยอะ
order_length = 0
for index, out in enumerate(solution):
if out >= 1:
order_length += 1
if order_length > 2:
self._penalty += self._penalty_value * order_length # ยิ่งเกิน ยิ่ง _penaltyเยอะ
def paper_size_logic(self, _output):
if _output > self._paper_size : # ถ้าผลรวมมีค่ามากกว่า roll กำหนดขึ้น _penalty
self._penalty += self._penalty_value * (
_output - self._paper_size
) # ยิ่งเกิน ยิ่ง _penaltyเยอะ
def paper_trim_logic(self, _fitness_values):
if abs(_fitness_values) <= MIN_TRIM: # ถ้าผลรวมมีค่าน้อยกว่า _penalty > เงื่อนไขบริษัท
self._penalty += self._penalty_value
def selector_logic(self, solution: List[int])->List[int]:
if self.selector is None:
return solution
try:
solution[0] = self.selector["out"] #lock the first to be out (the first order is also the selector, manage by ORD)
except KeyError:
pass
if solution[0] == 0:
solution[0] += 1
return solution
def fitness_function(self, ga_instance, solution, solution_idx):
self._penalty = 0
solution = self.selector_logic(solution)
self.paper_type_logic(solution)
self.least_order_logic(solution)
self.paper_out_logic(solution)
_output = numpy.sum(solution * self.orders["width"]) # ผลรวมของตัดกว้างทั้งหมด
_fitness_values = -self._paper_size + _output # ผลต่างของกระดาษที่มีกับออเดอร์ ยิ่งเยอะยิ่งดี
self.paper_trim_logic(_fitness_values)
return _fitness_values - self._penalty # ลบด้วย _penalty
def on_gen(self, ga_instance):
self.current_generation += 1
if self.set_progress:
progress = (self.current_generation / self.num_generations) * 100
self.set_progress(progress)
orders = self.orders
solution = ga_instance.best_solution()[0]
_output = pd.DataFrame(
{
"id": orders['id'].unique(),
"blade": 0,
"order_number": orders["order_number"],
"num_orders": orders["quantity"],
"component_type": orders["component_type"],
"cut_width": orders["width"],
"cut_len": orders["length"],
"type": orders["edge_type"],
"deadline": orders["due_date"],
"front_sheet": orders["front_sheet"],
"c_wave": orders["c_wave"],
"middle_sheet": orders["middle_sheet"],
"b_wave": orders["b_wave"],
"back_sheet": orders["back_sheet"],
"num_layers": orders["level"],
"left_line": orders["left_edge_cut"],
"center_line": orders["middle_edge_cut"],
"right_line": orders["right_edge_cut"],
"out": solution,
}
)
if not self.showZero:
_output = _output[_output["out"] >= 1]
_output = _output.reset_index(drop=True)
_output = self.blade_logic(_output)
self._fitness_values = ga_instance.best_solution()[1]
self._output = _output
if self.showOutput:
self.show(ga_instance, _output)
def blade_logic(self, output: DataFrame) -> DataFrame:
blade_list: List[Dict[str,int]] = []
for idx in output.index:
blade_val = idx+1
if self.blade is not None:
blade_val = self.blade
blade_list.append({"blade": blade_val})
blade_df = pd.DataFrame(blade_list)
output = pd.concat([output, blade_df], axis=1)
return output
def show(self, ga_instance, _output):
_paper_size = self._paper_size
print("Generation : ", ga_instance.generations_completed)
print("Solution :")
with pd.option_context(
"display.max_columns",
None,
"display.width",
None,
"display.colheader_justify",
"left",
):
print(_output.to_string(index=False))
print("Roll :", _paper_size )
print("Used :", _paper_size + self._fitness_values)
print("Trim :", abs(self._fitness_values))
print("\n")
@property
def output(self) -> DataFrame:
return self._output
@property
def fitness_values(self) -> float:
return self._fitness_values
@property
def penalty(self) -> int:
return self._penalty
@penalty.setter
def penalty(self, penalty:int) -> None:
self._penalty = penalty
@property
def PAPER_SIZE(self) -> float:
return self._paper_size
@PAPER_SIZE.setter
def PAPER_SIZE (self, size: float):
self._paper_size = size
@property
def run(self) -> Callable:
return self.model.run