-
Notifications
You must be signed in to change notification settings - Fork 1
/
kuramoto.py
232 lines (178 loc) · 6.7 KB
/
kuramoto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/python
# coding: UTF-8
#
# Author: Dawid Laszuk
# Contact: [email protected]
#
# Last update: 12/03/2017
#
# Feel free to contact for any information.
#
# You can cite this code by referencing:
# D. Laszuk, "Python implementation of Kuramoto systems," 2017-,
# [Online] Available: http://www.laszukdawid.com/codes
#
# LICENCE:
# This program is free software on GNU General Public Licence version 3.
# For details of the copyright please see: http://www.gnu.org/licenses/.
from __future__ import print_function
import numpy as np
from scipy.integrate import ode
__version__ = '0.3'
__author__ = 'Dawid Laszuk'
class Kuramoto(object):
"""
Implementation of Kuramoto coupling model [1] with harmonic terms
and possible perturbation.
It uses NumPy and Scipy's implementation of Runge-Kutta 4(5)
for numerical integration.
Usage example:
>>> kuramoto = Kuramoto(initial_values)
>>> phase = kuramoto.solve(X)
[1] Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence
(Vol. 19). doi: doi.org/10.1007/978-3-642-69689-3
"""
_noises = { 'logistic': np.random.logistic,
'normal': np.random.normal,
'uniform': np.random.uniform,
'custom': None
}
noise_types = _noises.keys()
def __init__(self, init_values, noise=None):
"""
Passed arguments should be a dictionary with NumPy arrays
for initial phase (Y0), intrisic frequencies (W) and coupling
matrix (K).
"""
self.dtype = np.float32
self.dt = 1.
self.init_phase = np.array(init_values['Y0'])
self.W = np.array(init_values['W'])
self.K = np.array(init_values['K'])
self.n_osc = len(self.W)
self.m_order = self.K.shape[0]
self.noise = noise
@property
def noise(self):
"""Sets perturbations added to the system at each timestamp.
Noise function can be manually defined or selected from
predefined by assgining corresponding name. List of available
pertrubations is reachable through `noise_types`. """
return self._noise
@noise.setter
def noise(self, _noise):
self._noise = None
self.noise_params = None
self.noise_type = 'custom'
# If passed a function
if callable(_noise):
self._noise = _noise
# In case passing string
elif isinstance(_noise, str):
if _noise.lower() not in self.noise_types:
self.noise_type = None
raise NameError("No such noise method")
self.noise_type = _noise.lower()
self.update_noise_params(self.dt)
noise_function = self._noises[self.noise_type]
self._noise = lambda: np.array([noise_function(**p) for p in self.noise_params])
def update_noise_params(self, dt):
self.scale_func = lambda dt: dt/np.abs(self.W**2)
scale = self.scale_func(dt)
if self.noise_type == 'uniform':
self.noise_params = [{'low':-s, 'high': s} for s in scale]
elif self.noise_type in self.noise_types:
self.noise_params = [{'loc':0, 'scale': s} for s in scale]
else:
pass
def kuramoto_ODE(self, t, y, arg):
"""General Kuramoto ODE of m'th harmonic order.
Argument `arg` = (w, k), with
w -- iterable frequency
k -- 3D coupling matrix, unless 1st order
"""
w, k = arg
yt = y[:,None]
dy = y-yt
phase = w.astype(self.dtype)
if self.noise != None:
n = self.noise().astype(self.dtype)
phase += n
for m, _k in enumerate(k):
phase += np.sum(_k*np.sin((m+1)*dy),axis=1)
return phase
def kuramoto_ODE_jac(self, t, y, arg):
"""Kuramoto's Jacobian passed for ODE solver."""
w, k = arg
yt = y[:,None]
dy = y-yt
phase = [m*k[m-1]*np.cos(m*dy) for m in range(1,1+self.m_order)]
phase = np.sum(phase, axis=0)
for i in range(self.n_osc):
phase[i,i] = -np.sum(phase[:,i])
return phase
def solve(self, t):
"""Solves Kuramoto ODE for time series `t` with initial
parameters passed when initiated object.
"""
dt = t[1]-t[0]
if self.dt != dt and self.noise_type != 'custom':
self.dt = dt
self.update_noise_params(dt)
kODE = ode(self.kuramoto_ODE, jac=self.kuramoto_ODE_jac)
kODE.set_integrator("dopri5")
# Set parameters into model
kODE.set_initial_value(self.init_phase, t[0])
kODE.set_f_params((self.W, self.K))
kODE.set_jac_params((self.W, self.K))
if self._noise != None:
self.update_noise_params(dt)
phase = np.empty((self.n_osc, len(t)))
# Run ODE integrator
for idx, _t in enumerate(t[1:]):
phase[:,idx] = kODE.y
kODE.integrate(_t)
phase[:,-1] = kODE.y
return phase
######################################
if __name__ == "__main__":
import pylab as plt
####################################################
t0, t1, dt = 0, 40, 0.05
T = np.arange(t0, t1, dt)
# Y0, W, K are initial phase, intrisic freq and
# coupling K matrix respectively
_Y0 = np.array([0, np.pi,0,1, 5, 2, 3])
_W = np.array([28,19,11,9, 2, 4])
_K = np.array([[ 2.3844, 1.2934, 0.6834, 2.0099, 1.9885],
[ -2.3854, 3.6510, 2.0467, 3.6252, 3.2463],
[ 10.1939, 4.4156, 1.1423, 0.2509, 4.1527],
[ 3.8386, 2.8487, 3.4895, 0.0683, 0.8246],
[ 3.9127, 1.2861, 2.9401, 0.1530, 0.6573]])
_K2 = np.array([[ 0.2628, 0.0043, 0.9399, 0.5107, 0.9857],
[ 0.8667, 0.8154, 0.4592, 0.9781, 0.0763],
[ 0.3723, 0.3856, 0.8374, 0.8812, 0.9419],
[ 0.1869, 0.2678, 0.9704, 0.2823, 0.3404],
[ 0.1456, 0.7341, 0.1389, 0.5602, 0.3823]])
_K = np.dstack((_K, _K2)).T
# Preparing oscillators with Kuramoto model
oscN = 3 # num of oscillators
Y0 = _Y0[:oscN]
W = _W[:oscN]
K = _K[:,:oscN,:oscN]
init_params = {'W':W, 'K':K, 'Y0':Y0}
kuramoto = Kuramoto(init_params)
kuramoto.noise = 'logistic'
odePhi = kuramoto.solve(T)
odeT = T[:-1]
##########################################
# Plot the phases
plt.figure()
for comp in range(len(W)):
plt.subplot(len(W),1,comp+1)
plt.plot(odeT, np.diff(odePhi[comp])/dt,'r')
plt.ylabel('$\dot\phi_%i(t)$'%(comp+1))
plt.suptitle("Instantaneous frequencies")
plt.savefig('phases')
# Display plot
plt.show()