-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathsudoku.py
45 lines (34 loc) · 1.21 KB
/
sudoku.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/env python
# coding: utf-8
import os
import pickle
import sys
import numpy as np
from scripts.sudokuExtractor import Extractor
from scripts.train import NeuralNetwork
from scripts.sudoku_str import SudokuStr
def create_net(rel_path):
with open(os.getcwd() + rel_path) as in_file:
sizes, biases, wts = pickle.load(in_file)
return NeuralNetwork(customValues=(sizes, biases, wts))
def get_cells(image_path): # yields 9 * 9 = 81 cells
net = create_net(rel_path='/networks/net')
for row in Extractor(os.path.abspath(image_path)).cells:
for cell in row:
x = net.feedforward(np.reshape(cell, (784, 1)))
x[0] = 0
digit = np.argmax(x)
yield str(digit) if list(x[digit])[0] / sum(x) > 0.8 else '.'
def snap_sudoku(image_path):
grid = ''.join(cell for cell in get_cells(image_path))
s = SudokuStr(grid)
try:
print('\nSolving...\n\n{}'.format(s.solve()))
except ValueError:
print('No solution found. Please rescan the puzzle.')
if __name__ == '__main__':
try:
snap_sudoku(image_path=sys.argv[1])
except IndexError:
fmt = 'usage: {} image_path'
print(fmt.format(__file__.split('/')[-1]))