-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathML_Regression_Template
729 lines (544 loc) · 27.1 KB
/
ML_Regression_Template
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
#Machine Learning Model (General)..
# Link for different types of scores
# https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
# 1. Fitting Simple Linear Regression to the Training Set
from sklearn import linear_model
regressor_linreg = linear_model.LinearRegression()
regressor_linreg.fit(x_train, y_train)
# Predicting the Test set results
y_pred_linreg = regressor_linreg.predict(x_cv)
# Score for Linear Regression
from sklearn.metrics import mean_squared_error
score_linreg=mean_squared_error(y_cv, y_pred_linreg)
# 2. Fitting Simple Linear Regression(LASSO) to the Training Set
from sklearn import linear_model
regressor_lasso = linear_model.LassoCV()
regressor_lasso.fit(x_train, y_train)
# Predicting the Test set results
y_pred_laaso = regressor_lasso.predict(x_cv)
# Score for Linear Regression
from sklearn.metrics import mean_squared_error
score_laaso=mean_squared_error(y_cv, y_pred_laaso)
# 3. Fitting Simple Linear Regression(LASSO) to the Training Set
from sklearn import linear_model
regressor_ridge = linear_model.Ridge()
regressor_ridge.fit(x_train, y_train)
# Predicting the Test set results
y_pred_ridge = regressor_ridge.predict(x_cv)
# Score for Linear Regression
from sklearn.metrics import mean_squared_error
score_ridge=mean_squared_error(y_cv, y_pred_ridge)
# 4. Fitting SVR - Linear to Training Set
from sklearn.svm import SVR
regressor_svr_lin = SVR(kernel='linear')
regressor_svr_lin.fit(x_train, y_train)
# Predicting the test result
y_pred_svr_lin = regressor_svr_lin.predict(x_cv)
# Score for Linear Regression
from sklearn.metrics import mean_squared_error
score_svr_lin=mean_squared_error(y_cv, y_pred_svr_lin)
# 5. Fitting SVR - Gaussian RBF to Training Set
from sklearn.svm import SVR
regressor_svr_rbf = SVR(kernel = 'rbf')
regressor_svr_rbf.fit(x_train, y_train)
# Predicting the test result
y_pred_svr_rbf = regressor_svr_rbf.predict(x_cv)
# Score for Linear Regression
from sklearn.metrics import mean_squared_error
score_svr_rbf=mean_squared_error(y_cv, y_pred_svr_rbf)
# 6. Fitting Desicion Tree to Training Set
from sklearn.tree import DecisionTreeRegressor
regressor_dectree = DecisionTreeRegressor(random_state = 0)
regressor_dectree.fit(x_train, y_train)
# Predicting the test result
y_pred_dectree = regressor_dectree.predict(x_cv)
# Score for Linear Regression
from sklearn.metrics import mean_squared_error
score_dectree=mean_squared_error(y_cv, y_pred_dectree)
# 7. Fitting Random Forest to Training Set
from sklearn.ensemble import RandomForestRegressor
regressor_rf = RandomForestRegressor(n_estimators = 10, random_state = 0)
regressor_rf.fit(x_train, y_train)
# Predicting the test result
y_pred_rf = regressor_rf.predict(x_cv)
# Score for Linear Regression
from sklearn.metrics import mean_squared_error
score_rf=mean_squared_error(y_cv, y_pred_rf)
# 8. Fitting ADA BOOST to Training Set
from sklearn.ensemble import AdaBoostRegressor
regressor_ada = AdaBoostRegressor(n_estimators = 10, random_state = 0)
regressor_ada.fit(x_train, y_train)
# Predicting the test result
y_pred_ada = regressor_ada.predict(x_cv)
# Score for Linear Regression
from sklearn.metrics import mean_squared_error
score_ada=mean_squared_error(y_cv, y_pred_ada)
# 9. Fitting XG BOOST to Training Set
from xgboost.sklearn import XGBRegressor
regressor_xgb = XGBRegressor()
regressor_xgb.fit(x_train, y_train)
# Predicting the test result
y_pred_xgb = regressor_xgb.predict(x_cv)
# Score for Linear Regression
from sklearn.metrics import mean_squared_error
score_xgb=mean_squared_error(y_cv, y_pred_xgb)
# MACHINE LEARNING (K FOLD)
scoring_mech= 'neg_mean_squared_error'
cross_val = 10
# 1. Linear Regression with K fold validation
from sklearn.model_selection import cross_val_score
clf = linear_model.LinearRegression()
scores = cross_val_score(clf, x, y,scoring=scoring_mech, cv=cross_val)
score_linreg_kfold=abs(scores.mean())
# 2. Linear Regression LASSO with K fold validation
from sklearn.model_selection import cross_val_score
clf = linear_model.Lasso()
scores = cross_val_score(clf, x, y,scoring=scoring_mech, cv=cross_val)
score_lasso_kfold=abs(scores.mean())
# 3. Linear Regression RIDGE with K fold validation
from sklearn.model_selection import cross_val_score
clf = linear_model.Ridge()
scores = cross_val_score(clf, x, y,scoring=scoring_mech, cv=cross_val)
score_ridge_kfold=abs(scores.mean())
# 4. Support Vector Machine - LINEAR with K fold validation
from sklearn.model_selection import cross_val_score
clf = SVR(kernel='linear')
scores = cross_val_score(clf, x, y,scoring=scoring_mech, cv=cross_val)
score_svr_lin_kfold=abs(scores.mean())
# 5. Support Vector Machine - GAUSSIAN RBF with K fold validation
from sklearn.model_selection import cross_val_score
clf = SVR(kernel='rbf')
scores = cross_val_score(clf, x, y,scoring=scoring_mech, cv=cross_val)
score_svr_rbf_kfold=abs(scores.mean())
# 6. Decision Tree with K fold validation
from sklearn.model_selection import cross_val_score
clf = DecisionTreeRegressor(random_state=0)
scores = cross_val_score(clf, x, y,scoring=scoring_mech, cv=cross_val)
score_dectree_kfold=abs(scores.mean())
# 7. Random Forest with K fold validation
from sklearn.model_selection import cross_val_score
clf = RandomForestRegressor(random_state=0)
scores = cross_val_score(clf, x, y,scoring=scoring_mech, cv=cross_val)
score_rf_kfold=abs(scores.mean())
# 8. ADA Boost with K fold validation
from sklearn.model_selection import cross_val_score
clf = AdaBoostRegressor()
scores = cross_val_score(clf, x, y,scoring=scoring_mech, cv=cross_val)
score_ada_kfold=abs(scores.mean())
# 9. XG Boost with K fold validation
from xgboost.sklearn import XGBRegressor
from sklearn.model_selection import cross_val_score
clf = XGBRegressor()
scores = cross_val_score(clf, x, y,scoring=scoring_mech, cv=cross_val)
score_xgb_kfold=abs(scores.mean())
#GRID SEARCH
scoring_mech= 'neg_mean_squared_error'
cross_validation_value= 10
# 1. Grid Search with Linear Regression Linear Search
from sklearn import linear_model
from sklearn.model_selection import GridSearchCV
parameters = {}
regressor_linreg = linear_model.LinearRegression()
grid_search_linreg = GridSearchCV(estimator = regressor_linreg,
param_grid = parameters,
scoring =scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
grid_search_linreg = grid_search_linreg.fit(x, y)
score_linreg_gridsearch= abs(grid_search_linreg.best_score_)
bestparam_linreg_grid = grid_search_linreg.best_params_
# 2. Grid Search with Linear Regression LASSO
from sklearn import linear_model
from sklearn.model_selection import GridSearchCV
parameters = [{'alpha': [1], #eps, positive float, (.001,1000)
'copy_X' : [True], #same
'fit_intercept':[True], # Boolean, default:True
'max_iter':[1000],#Iteration, (1,1000)
'normalize':[False], # Boolean, default:False
'positive':[False],#same
'precompute':[False], # (True,False,auto (best))
'random_state':[None], #same
'selection':['cyclic'],#same
'tol':[0.001] # positive float ,(0 1),
}]
regressor_lasso = linear_model.Lasso()
grid_search_lasso = GridSearchCV(estimator = regressor_lasso,
param_grid = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
grid_search_lasso = grid_search_lasso.fit(x, y)
score_lasso_gridsearch= abs(grid_search_lasso.best_score_)
bestparam_lasso_grid = grid_search_lasso.best_params_
# 3. Grid Search with Linear Regression RIDGE
from sklearn import linear_model
from sklearn.model_selection import GridSearchCV
parameters = [{'alpha': [1], # positive float (.001,1000)
'copy_X' : [True], # same
'fit_intercept':[True], # Boolean, default:True
'max_iter':[None], # int (1,1000)
'normalize':[False],# Boolean, default:False
'solver':['auto'], # solver : {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’}
'tol':[0.001]
}]
regressor_ridge = linear_model.Ridge()
grid_search_ridge = GridSearchCV(estimator = regressor_ridge,
param_grid = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
grid_search_ridge = grid_search_ridge.fit(x, y)
score_ridge_gridsearch= abs(grid_search_ridge.best_score_)
bestparam_ridge_grid = grid_search_ridge.best_params_
# 4. Grid Search with DecisionTree
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import GridSearchCV
parameters = [{'criterion': ['mse'], # {'mse','mae','friedman_mse',}
'max_depth': [None], # int, {None,or int value}
'max_features': [None], # same
'max_leaf_nodes': [None], # int, {None,or int value}
'min_impurity_decrease': [0.0],# float ,default = .0001
'min_impurity_split': [None], # float ,default = 0
'min_samples_leaf' : [1], # int ,default = 1
'min_samples_split' : [2], # int ,default = 2
'min_weight_fraction_leaf' : [0.0], # int ,default = 0
'presort' : [False], # Boolean , default= False
'splitter':['best'] #{'best','random'}
}]
regressor_dectree = DecisionTreeRegressor(random_state=0)
grid_search_dectree = GridSearchCV(estimator = regressor_dectree,
param_grid = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
grid_search_dectree = grid_search_dectree.fit(x, y)
score_dectree_gridsearch= abs(grid_search_dectree.best_score_)
bestparam_dectree_grid = grid_search_dectree.best_params_
# 5. Grid Search with Random Forest
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
parameters = [{'criterion': ['mse'], # {'mse','mae'}
'max_depth': [None],# int, {None,or int value}
'max_features': ['auto'], #same
'max_leaf_nodes': [None],# int, {None,or int value}
'min_impurity_decrease': [0], # float, default =0
'min_impurity_split': [None], # float ,default = 0.0001
'min_samples_leaf' : [1], # int ,default = 1
'min_samples_split' : [2], # int ,default = 2
'min_weight_fraction_leaf' : [0], # float ,default = 0
'n_estimators': [100] # no of trees, default = 10
}]
regressor_rf = RandomForestRegressor(random_state = 0)
grid_search_rf = GridSearchCV(estimator = regressor_rf,
param_grid = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
grid_search_rf = grid_search_rf.fit(x, y)
score_rf_gridsearch= abs(grid_search_rf.best_score_)
bestparam_rf_grid = grid_search_rf.best_params_
# 6. Grid Search with ADA BOOST
from sklearn.ensemble import AdaBoostRegressor
from sklearn.model_selection import GridSearchCV
parameters = [{'base_estimator' : [None],
'learning_rate': [.1], # default =1
'loss': ['linear', 'square', 'exponential'],# {‘linear’, ‘square’, ‘exponential’}, default = linear
'n_estimators': [60], # default = 50
}]
regressor_ada = AdaBoostRegressor(random_state = 0)
grid_search_ada = GridSearchCV(estimator = regressor_ada,
param_grid = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
grid_search_ada = grid_search_ada.fit(x, y)
score_ada_gridsearch= abs(grid_search_ada.best_score_)
bestparam_ada_grid = grid_search_ada.best_params_
# 7. Grid Search with XG BOOST
from xgboost.sklearn import XGBRegressor
from sklearn.model_selection import GridSearchCV
parameters = [{'objective':['reg:linear'],
'learning_rate': [0.1], #eta range()
'max_depth': [3], # max_depth range(1,15)
'min_child_weight': [1], # min_child_weight range(0,7)
'subsample': [1], #subsample (.1,1)
'colsample_bytree': [1], # colsample_bytree(0,1)
'colsample_bylevel': [1], # colsample_bytree(0,1)
'n_estimators': [51,55,60],# nrounds(1,5000)
'reg_alpha':[493,795],# (1,1000)
'reg_lambda':[31],# (1,1000)
'min_split_loss':[0],
'booster': ['gbtree','dart'] # (‘gbtree’,’dart’,gloss)
}]
regressor_xgb = XGBRegressor()
grid_search_xgb = GridSearchCV(estimator = regressor_xgb,
param_grid = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
grid_search_xgb = grid_search_xgb.fit(x, y)
score_xgb_gridsearch= abs(grid_search_xgb.best_score_)
bestparam_xgb_grid = grid_search_xgb.best_params_
# 8. Grid Search with SVR (Linear,Polynomial,Sigmoid, RBF Gaussian)
from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
parameters = [{'kernel':['linear','poly','sigmoid','rbf'], #{'linear','poly','sigmoid','rbf'}
'coef0' : [0], # float, default = 0
'tol' : [.001], #float, default = 0.001
'degree':[], # used in poly ,ignored by other kernels
'gamma': [0.0001, 0.001], # float,default= 'auto'
'C': [0.1, 1], # float, default = 1
'epsilon': [0.0001, 0.0005, ],# float default = 0.1
}]
regressor_svr =SVR(kernel='linear')
grid_search_svr = GridSearchCV(estimator = regressor_svr,
param_grid = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
grid_search_svr = grid_search_svr.fit(x, y)
score_svr_gridsearch= abs(grid_search_svr.best_score_)
bestparam_svr_grid = grid_search_svr.best_params_
# 9. Grid Search with LIGHT_GadientBoostingM
from lightgbm import LGBMRegressor
from sklearn.model_selection import GridSearchCV
parameters = {
'boosting_type':['gbdt'],# {'gbdt','dart','rf','goss'}
'class_weight':[None], # same
'colsample_bytree' : [1],# float,default : 1
'importance_type':['split'], # same
'learning_rate':[0.1],# float ,default =.1
'max_depth':[-1], # int ,default = -1
'min_child_samples' : [20], # int , default = 20
'min_child_weight' : [0.001], # float, default =.0001
'min_split_gain' : [0],# float, default = 0
'n_estimators' : [100], # int , default = 100
'num_leaves' : [31],# int ,default= 31
'objective' : [None],
'random_state' : [None],# same
'reg_alpha' : [0.0],# float, default : 0
'reg_lambda' : [0.0],# float, default : 0
'silent' : [True],# same
'subsample' : [1],# float, default =1
'subsample_for_bin' : [200000],# int ,default = 200000
'subsample_freq' : [0] # same
}
##parameters={}
regressor_lgbm = LGBMRegressor()
grid_search_lgbm = GridSearchCV(estimator = regressor_lgbm,
param_grid = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
grid_search_lgbm = grid_search_lgbm.fit(x, y)
accuracy_lgbm_grid = abs(grid_search_lgbm.best_score_)
bestparam_lgbm_grid = grid_search_lgbm.best_params_
# 10. Grid Search with CATBoost
from catboost import CatBoostRegressor
from sklearn.model_selection import GridSearchCV
parameters = {
'loss_function':['RMSE'], #
'iterations' :[50],
'learning_rate': [0.3], # Float ,default : .03
'l2_leaf_reg' :[3], #Lambda, default : 3
# 'bootstrap_type' : ['bayesian'],
# 'bagging_temperature' : [1], # default : 1, (0,infinity) float
# 'subsample':[.66], # Float,
'sampling_frequency': ['PerTree','PerTreeLevel'],
'depth':[6], # int , default =6 , range(1,16)
'min_data_in_leaf' : [1], # default : 1
'max_leaves' : [31], #int , default : 31 , range(1,64) not more than 64 is recommended
# 'scale_pos_weight' : [1],# Float, default : 1
# 'boosting_type' ['Ordered'], # ['Ordered ','Plain']
# 'early_stopping_rounds' : [False], # int ,
}
regressor_catb = CatBoostRegressor(eval_metric='RMSE')
grid_search_catb = GridSearchCV(estimator = regressor_catb,
param_grid = parameters,
scoring=scoring_mech,
cv = cross_validation_value)
grid_search_catb = grid_search_catb.fit(x, y)
accuracy_catb_grid = abs(grid_search_catb.best_score_)
bestparam_catb_grid = grid_search_catb.best_params_
# Random Search CV
# C = uniform(loc=0, scale=4)
# penalty = ['l1', 'l2']
# np.arange(6, 14,1, dtype=int)
scoring_mech= 'neg_mean_squared_error'
cross_validation_value= 10
# 1. Random Search with Linear Regression Linear Search
from sklearn import linear_model
from sklearn.model_selection import RandomizedSearchCV
parameters = {}
regressor_linreg = linear_model.LinearRegression()
random_search_linreg = RandomizedSearchCV(estimator = regressor_linreg,
param_distributions = parameters,
scoring =scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
random_search_linreg = random_search_linreg.fit(x, y)
score_linreg_random= abs(random_search_linreg.best_score_)
bestparam_linreg_random = random_search_linreg.best_params_
# 2. Random Search with Linear Regression LASSO
from sklearn import linear_model
from sklearn.model_selection import RandomizedSearchCV
parameters = {'alpha': [1], #eps, positive float, (.001,1000)
'copy_X' : [True], #same
'fit_intercept':[True], # Boolean, default:True
'max_iter':[1000],#Iteration, (1,1000)
'normalize':[False], # Boolean, default:False
'positive':[False],#same
'precompute':[False], # (True,False,auto (best))
'random_state':[None], #same
'selection':['cyclic'],#same
'tol':[0.001] # positive float ,(0 1),
}
regressor_lasso = linear_model.Lasso()
random_search_lasso = RandomizedSearchCV(estimator = regressor_lasso,
param_distributions = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
random_search_lasso = random_search_lasso.fit(x, y)
score_lasso_random= abs(random_search_lasso.best_score_)
bestparam_lasso_random = random_search_lasso.best_params_
# 3. Random Search with Linear Regression RIDGE
from sklearn import linear_model
from sklearn.model_selection import RandomizedSearchCV
parameters = {'alpha': [1], # positive float (.001,1000)
'copy_X' : [True], # same
'fit_intercept':[True], # Boolean, default:True
'max_iter':[None], # int (1,1000)
'normalize':[False],# Boolean, default:False
'solver':['auto'], # solver : {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’}
'tol':[0.001]
}
regressor_ridge = linear_model.Ridge()
random_search_ridge = RandomizedSearchCV(estimator = regressor_ridge,
param_distributions = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
random_search_ridge = random_search_ridge.fit(x, y)
score_ridge_random= abs(random_search_ridge.best_score_)
bestparam_ridge_random = random_search_ridge.best_params_
# 4. Random Search with DecisionTree
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import RandomizedSearchCV
parameters = {'criterion': ['mse'], # {'mse','mae','friedman_mse',}
'max_depth': [6], # int, {None,or int value}
'max_features': ['auto'], # same
'max_leaf_nodes': [None], # int, {None,or int value}
'min_impurity_decrease': [0],# float ,default = 0
'min_impurity_split': [1,2], # float ,default = 0.0001
'min_samples_leaf' : [50], # int ,default = 1
'min_samples_split' : [2], # int ,default = 2
'min_weight_fraction_leaf' : [0,0.5], # int ,default = 0
'presort' : [False], # Boolean , default= False
'splitter':['best'] #{'best','random'}
}
regressor_dectree = DecisionTreeRegressor(random_state=0)
random_search_dectree = RandomizedSearchCV(estimator = regressor_dectree,
param_distributions = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
random_search_dectree = random_search_dectree.fit(x, y)
score_dectree_random= abs(random_search_dectree.best_score_)
bestparam_dectree_random = random_search_dectree.best_params_
# 5. Random Search with Random Forest
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
parameters = {'criterion': ['mse'], # {'mse','mae'}
'max_depth': [6],# int, {None,or int value}
'max_features': ['auto'], #same
'max_leaf_nodes': [None],# int, {None,or int value}
'min_impurity_decrease': [0], # float, default =0
'min_impurity_split': [.01], # float ,default = 0.0001
'min_samples_leaf' : [50], # int ,default = 1
'min_samples_split' : [2], # int ,default = 2
'min_weight_fraction_leaf' : [0], # float ,default = 0
'n_estimators': [1000] # no of trees, default = 10
}
regressor_rf = RandomForestRegressor(random_state = 0)
random_search_rf = RandomizedSearchCV(estimator = regressor_rf,
param_distributions = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
random_search_rf = random_search_rf.fit(x, y)
score_rf_random= abs(random_search_rf.best_score_)
bestparam_rf_random = random_search_rf.best_params_
# 6. Random Search with ADA BOOST
from sklearn.ensemble import AdaBoostRegressor
from sklearn.model_selection import RandomizedSearchCV
parameters = {'base_estimator' : [None],
'learning_rate': [.1], # default =1
'loss': ['linear', 'square', 'exponential'],# {‘linear’, ‘square’, ‘exponential’}, default = linear
'n_estimators': [60], # default = 50
}
regressor_ada = AdaBoostRegressor(random_state = 0)
random_search_ada = RandomizedSearchCV(estimator = regressor_ada,
param_distributions = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
random_search_ada = random_search_ada.fit(x, y)
score_ada_random= abs(random_search_ada.best_score_)
bestparam_ada_random = random_search_ada.best_params_
# 7. Random Search with XG BOOST
from xgboost.sklearn import XGBRegressor
from sklearn.model_selection import RandomizedSearchCV
parameters = {'objective':['reg:linear'],
'learning_rate': [0.1], #eta range()
'max_depth': [3], # max_depth range(1,15)
'min_child_weight': [1], # min_child_weight range(0,7)
'subsample': [1], #subsample (.1,1)
'colsample_bytree': [1], # colsample_bytree(0,1)
'colsample_bylevel': [1], # colsample_bytree(0,1)
'n_estimators': [51,55,60],# nrounds(1,5000)
'reg_alpha':[493,795],
'reg_lambda':[31],
'min_split_loss':[0],
'booster': ['gbtree','dart']
}
regressor_xgb = XGBRegressor()
random_search_xgb = RandomizedSearchCV(estimator = regressor_xgb,
param_distributions = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
random_search_xgb = random_search_xgb.fit(x, y)
score_xgb_random= abs(random_search_xgb.best_score_)
bestparam_xgb_random = random_search_xgb.best_params_
# 8. Random Search with SVR (Linear,Polynomial,Sigmoid, RBF Gaussian)
from sklearn.svm import SVR
from sklearn.model_selection import RandomizedSearchCV
parameters = {'kernel':['linear','poly','sigmoid','rbf'], #{'linear','poly','sigmoid','rbf'}
'coef0' : [0], # float, default = 0
'tol' : [.001], #float, default = 0.001
'degree':[3], # used in poly ,ignored by other kernels
'gamma': [0.0001, 0.001], # float,default= 'auto'
'C': [0.1, 1], # float, default = 1
'epsilon': [0.0001, 0.0005, ] # float default = 0.1
}
regressor_svr =SVR(kernel='linear')
random_search_svr = RandomizedSearchCV(estimator = regressor_svr_lin,
param_distributions = parameters,
scoring = scoring_mech,
cv = cross_validation_value,
n_jobs = -1)
random_search_svr = random_search_svr.fit(x, y)
score_svr_random= abs(random_search_svr.best_score_)
bestparam_svr_random = random_search_svr.best_params_
# FEATURES IMPORTANCE
# Features Importance
importances=pd.Series(classifier_rf.feature_importances_, index=X_train.columns)
importances.plot(kind='barh', figsize=(12,8))
# create submission file
pred = grid_search_rf.predict(dataset_test)
submission = pd.DataFrame(data=[], columns=['Item_Identifier', 'Outlet_Identifier', 'Item_Outlet_Sales'])
submission['Item_Identifier'] = dataset_test1['Item_Identifier']
submission['Outlet_Identifier'] = dataset_test1['Outlet_Identifier']
submission['Item_Outlet_Sales'] = pred
submission.to_csv('submission.csv', index=False)