-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery_data.py
50 lines (40 loc) · 1.51 KB
/
query_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import argparse
from langchain.vectorstores.chroma import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms.ollama import Ollama
from utils import *
from pdb import set_trace as bp
CHROMA_PATH = "chroma"
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Now, Answer the question based on the above context: {question}
"""
def query_rag(query_text: str):
# Prepare the DB
print("Preparing the DB")
embedding_function = get_embedding_function()
db = Chroma(
persist_directory=CHROMA_PATH, embedding_function=embedding_function
)
# Search the DB
print("Searching the DB")
results = db.similarity_search_with_score(query_text, k = 3)
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context = context_text, question = query_text)
model = Ollama(model="llama3")
response_text = model.invoke(prompt)
sources = [doc.metadata.get("id", None) for doc, _score in results]
formatted_response = f"Response: {response_text} \n\nSources: {sources}"
print(formatted_response)
return response_text
def main():
parser = argparse.ArgumentParser()
parser.add_argument("query_text", type=str, help="The query/question to the model")
args = parser.parse_args()
query_text = args.query_text
query_rag(query_text)
if __name__ == "__main__":
main()