-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathintegrated_gradients_pipeline_paccmann.py
341 lines (283 loc) · 13.1 KB
/
integrated_gradients_pipeline_paccmann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# imports
import pandas as pd
import numpy as np
from tqdm import tqdm
import os
import json
import sys
from pycombat import Combat
import matplotlib.pyplot as plt
import utils as utils
import argparse
import socket
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import GroupKFold
import tensorflow as tf
import models as models
import evaluation as evaluation
import traceback
import paccmann_model as paccmann_model
import argparse
import joblib
import transfer_learning_pipeline as transfer_learning_pipeline
from tensorflow.keras.callbacks import EarlyStopping
import integrated_gradients as ig
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def list_string(s):
split_string = s.split(',')
out_list = []
for split_elem in split_string:
out_list.append(split_elem.strip().replace('\'','').replace('[','').replace(']',''))
return out_list
def main():
batch_size = 128
percentage_tune = 0.1
early_stopping_patience = 5
verbose = 1
use_combat = True
transform_gene_data = True
epochs_pretrain = 10
epochs = 100
parser = argparse.ArgumentParser()
parser.add_argument('-GPU','--GPU',type=int,default=0)
parser.add_argument('-param_json_path', '--param_json_path', type=str, default='data/params.json')
parser.add_argument('-source', '--source', type=str, default='gdsc')
parser.add_argument('-target', '--target', type=str, default='beat_aml')
parser.add_argument('-use_netpop', '--use_netpop', type=str, default='ensemble')
parser.add_argument('-seed','--seed', type=int, default = 42)
parser.add_argument('-flag_normalize_descriptors','--flag_normalize_descriptors',type=str,default='True')
parser.add_argument('-use_samples','--use_samples',type=int,default=10000)
parser.add_argument('-train_mode','--train_mode',type=str,default='drug_repurposing')
parser.add_argument('-save_dir','--save_dir',type=str,default='results_integrated_gradients/')
parser.add_argument('-save_prefix','--save_prefix',type=str,default='')
parser.add_argument('-flag_redo','--flag_redo',type=str,default='True')
parser.add_argument('-flag_pretrain','--flag_pretrain',type=str,default='True')
args = parser.parse_args()
GPU = args.GPU
param_json_path = args.param_json_path
source = args.source
target = args.target
use_netpop = args.use_netpop
seed = args.seed
flag_normalize_descriptors = boolean_string(args.flag_normalize_descriptors)
use_samples = args.use_samples
train_mode = args.train_mode
save_dir = args.save_dir
save_prefix = args.save_prefix
flag_redo = boolean_string(args.flag_redo)
flag_pretrain = boolean_string(args.flag_pretrain)
save_path = save_dir + save_prefix + source + '_' + target + '_' + str(use_samples) +\
'_' + str(flag_normalize_descriptors) + '_' + str(train_mode) + '_' + str(use_netpop) + '_flag_pretrain_' +\
str(flag_pretrain) + '_paccmann.joblib'
if os.path.exists(save_path) and not flag_redo:
return
if train_mode == 'drug_repurposing':
cv_key = None
elif train_mode == 'precision_oncology':
cv_key = 'lab_data'
elif train_mode == 'drug_development':
cv_key = 'inhib_data'
# read params
with open(param_json_path) as json_file:
param_dict = json.load(json_file)
# select GPU
# select graphic card
os.environ["CUDA_VISIBLE_DEVICES"] = str(GPU)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
config = tf.compat.v1.ConfigProto(log_device_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.5
config.gpu_options.allow_growth = True
tf_session = tf.compat.v1.Session(config=config)
cur_train_pretrain_data_dict = transfer_learning_pipeline.get_train_pretrain_data(param_json_path = param_json_path,
source=source,
target=target,
use_netpop=use_netpop,
seed = seed,
flag_normalize_descriptors=flag_normalize_descriptors,
train_mode=train_mode)
train_data = cur_train_pretrain_data_dict['train_data']
pre_train_data = cur_train_pretrain_data_dict['pre_train_data']
min_max_scaler = cur_train_pretrain_data_dict['min_max_scaler']
min_max_scaler_descr = cur_train_pretrain_data_dict['min_max_scaler_descr']
gene_list_dict = cur_train_pretrain_data_dict['gene_list_dict']
gene_list = cur_train_pretrain_data_dict['gene_list']
smiles_character_dict = cur_train_pretrain_data_dict['smiles_character_dict']
gene_list_used = cur_train_pretrain_data_dict['gene_list_used']
character_smiles_dict = dict()
for smiles in smiles_character_dict:
character_smiles_dict[smiles_character_dict[smiles]] = smiles
# get model_params
result_path = param_dict['model_param_pretrain_csv']
#use_netpop = None
model_params, gene_key, gene_use_ids = models.get_best_model_params(result_path,
gene_list_dict = gene_list_dict,
complete_gene_list = gene_list,
gene_list = use_netpop)
# paccmann params
model_params.update({
"batch_size": 64,
"decay_rate": 0.96,
"decay_steps": 3000,
"dropout": 0.3,
"eval_batch_size": 32,
"filter": [64,64,64],
"genes_number": model_params['num_gene_features'],
"kernels": [[3,16], [5,16], [11, 16]],
"learning_rate": 0.0002,
"max_num_epochs": 200,
"multiheads": [4,4,4,4],
"patience": 15,
"smiles_attention_size": 64,
"smiles_embedding_size": 16,
"smiles_length": model_params['drug_len'],
"smiles_vocab": model_params['vocab_size'],
"stacked_dense_hidden_sizes": [512, 128, 64, 16],
})
# rf params
model_params.update({'num_trees':100})
epochs_pretrain = {'nn_baseline':10,
'nn_paccmann':100,
'rf':None,
'tDNN':10}
# tDNN
model_params.update({'drug_descriptors':train_data['drug_data_des'].shape[1]})
num_gene_features = model_params['num_gene_features']
drug_len = model_params['drug_len']
embed_dim = model_params['embed_dim']
drug_filters = model_params['drug_filters']
drug_kernels = model_params['drug_kernels']
pool_sizes = model_params['pool_sizes']
dense_layers = model_params['dense_layers']
use_batch_decorrelation = model_params['use_batch_decorrelation']
use_normal_batch_norm = model_params['use_normal_batch_norm']
vocab_size = model_params['vocab_size']
gene_data = train_data['gene_data']
if transform_gene_data:
gene_data = utils.transformation_np(gene_data)
drug_data = train_data['drug_data']
drug_data_des = train_data['drug_data_des']
label = train_data['label']
inhib_data = train_data['inhib_data']
lab_data = train_data['lab_data']
# transform input
drug_data[drug_data >= vocab_size] = 0
train_label = label
train_gene_data = gene_data
train_drug_data = drug_data
train_drug_des_data = drug_data_des
# select tuning data
np.random.seed(seed)
rand_idx = np.random.permutation(np.arange(train_gene_data.shape[0]))
end_tune = int(np.ceil(percentage_tune * len(rand_idx)))
tune_ids = rand_idx[0:end_tune]
train_ids = rand_idx[end_tune:]
tune_gene_data = train_gene_data[tune_ids,:]
tune_drug_data = train_drug_data[tune_ids,:]
tune_drug_des_data = train_drug_des_data[tune_ids,:]
tune_label = train_label[tune_ids]
train_gene_data = train_gene_data[train_ids,:]
train_drug_data = train_drug_data[train_ids,:]
train_drug_des_data = train_drug_des_data[train_ids,:]
train_label = train_label[train_ids]
train_batch = [0]*len(train_label)
tune_batch = [0] * len(tune_label)
# perform combat
from pycombat import Combat
if pre_train_data is not None:
gene_data_pre = pre_train_data['gene_data']
if transform_gene_data:
gene_data_pre = utils.transformation_np(gene_data_pre)
drug_data_pre = pre_train_data['drug_data']
drug_data_des_pre = pre_train_data['drug_data_des']
label_pre = pre_train_data['label']
train_batch += [1] * len(label_pre)
if use_combat:
combat = Combat()
complete_combat_data = np.vstack([train_gene_data,gene_data_pre])
combat.fit(Y = complete_combat_data, b = train_batch, X = None, C = None)
gene_data_pre = combat.transform(Y = np.vstack([gene_data_pre,complete_combat_data]), b = [1] * len(label_pre) + train_batch, X = None, C = None)
gene_data_pre = gene_data_pre[0:len(label_pre),:]
train_gene_data = combat.transform(Y = np.vstack([train_gene_data,complete_combat_data]), b = [0] * len(train_label) + train_batch, X = None, C = None)
train_gene_data = train_gene_data[0:len(train_label),:]
tune_gene_data = combat.transform(Y = np.vstack([tune_gene_data,complete_combat_data]), b = [0] * len(tune_label) + train_batch, X = None, C = None)
tune_gene_data = tune_gene_data[0:len(tune_label),:]
# transform input
drug_data_pre[drug_data_pre >= vocab_size] = 0
use_epochs_pretrain = epochs_pretrain['nn_paccmann']
tf.keras.backend.clear_session()
model = paccmann_model.get_paccmann_model(model_params)
model_emb = paccmann_model.get_paccmann_model(model_params,
flag_embedding_as_input = True)
###############################################
#
# PRETRAIN ON SOURCE
#
###############################################
if flag_pretrain:
# pretrain on source data
model.fit([drug_data_pre,np.zeros([gene_data_pre.shape[0],1]),gene_data_pre],label_pre,epochs = use_epochs_pretrain,
batch_size = batch_size,verbose = verbose)
if use_samples is not None:
rand_idx = np.random.permutation(np.arange(train_gene_data.shape[0]))
train = rand_idx[0:use_samples]
train_label = label[train]
train_gene_data = gene_data[train,:]
train_drug_data = drug_data[train,:]
###############################################
#
# TRAIN ON TARGET
#
###############################################
# train on target data
early_stopping = EarlyStopping(monitor='loss', patience=early_stopping_patience)
model.fit([train_drug_data,np.zeros([train_drug_data.shape[0],1]),train_gene_data],train_label,epochs = epochs,
validation_data=([tune_drug_data,np.zeros([tune_drug_data.shape[0],1]),tune_gene_data],tune_label),
batch_size = batch_size,
callbacks = [early_stopping],
shuffle=True, verbose = verbose)
model_pre, model_con, model_emb = ig.get_sub_models(model,model_emb)
# number of steps to interpolate
m_steps=50
alphas = tf.linspace(start=0.0, stop=1.0, num=m_steps+1)
gene_data = train_data['gene_data']
if transform_gene_data:
gene_data = utils.transformation_np(gene_data)
drug_data = train_data['drug_data']
drug_data_des = train_data['drug_data_des']
label = train_data['label']
inhib_data = train_data['inhib_data']
lab_data = train_data['lab_data']
predictions = model.predict([drug_data,
np.zeros([drug_data.shape[0],1]),
gene_data],batch_size = batch_size)
gene_importances = np.zeros(gene_data.shape)
drug_importances = np.zeros(drug_data.shape)
for i in tqdm(np.arange(gene_data.shape[0])):
cur_gene_data = gene_data[i:i+1]
cur_drug_data = drug_data[i:i+1]
cur_zero_data = np.zeros([cur_drug_data.shape[0],1])
cur_data = [cur_drug_data,
cur_zero_data,
cur_gene_data]
gene_importances_scaled, drug_importances_scaled = ig.get_gene_drug_importances_for_instance_paccmann(cur_data, model_con,
model_emb, alphas)
gene_importances[i,:] = gene_importances_scaled
drug_importances[i,:] = drug_importances_scaled
joblib.dump({'gene_data':gene_data,
'drug_data':drug_data,
'drug_data_des':drug_data_des,
'label':label,
'inhib_data':inhib_data,
'lab_data':lab_data,
'predictions':predictions,
'gene_importances':gene_importances,
'drug_importances':drug_importances,
'gene_list':gene_list,
'gene_list_used':gene_list_used,
}, save_path, compress=3, protocol=2)
if __name__ == "__main__":
# execute only if run as a script
main()