-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathYODANESS_1.cpp
205 lines (173 loc) · 4.1 KB
/
YODANESS_1.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// PRATEEK CHANDAN
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <list>
#include <algorithm>
#include <tr1/unordered_map>
using namespace std;
// An AVL tree node
long long maincount=0;
struct node
{
int key;
struct node *left;
struct node *right;
int count;
int height;
};
// A utility function to get maximum of two integers
int max(int a, int b);
// A utility function to get height of the tree
int height(struct node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Helper function that allocates a new node with the given key and
NULL left and right pointers. */
struct node* newNode(int key)
{
struct node* node = (struct node*)
malloc(sizeof(struct node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially added at leaf
node->count =1; // It stores no of nodes in the tree
return(node);
}
// A utility function to right rotate subtree rooted with y
// See the diagram given above.
int givecount(node* t)
{
if(t==NULL)
return 0;
else
return t->count;
}
void updatecount(node *&t)
{
if(t==NULL)
return;
else
t->count=1+givecount(t->left)+givecount(t->right);
}
struct node *rightRotate(struct node *y)
{
struct node *x = y->left;
struct node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left), height(y->right))+1;
x->height = max(height(x->left), height(x->right))+1;
//UPDTAE COUNT
updatecount(y);
updatecount(x);
// Return new root
return x;
}
// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct node *leftRotate(struct node *x)
{
struct node *y = x->right;
struct node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left), height(x->right))+1;
y->height = max(height(y->left), height(y->right))+1;
// UPDATE COUNT
updatecount(x);
updatecount(y);
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(struct node *N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
struct node* insert(struct node* node, int key)
{
/* 1. Perform the normal BST rotation */
if (node == NULL)
return(newNode(key));
if (key < node->key)
{
maincount+= givecount(node->right)+1;
node->left = insert(node->left, key);
}
else
node->right = insert(node->right, key);
/* 2. Update height of this ancestor node */
node->height = max(height(node->left), height(node->right)) + 1;
updatecount(node);
/* 3. Get the balance factor of this ancestor node to check whether
this node became unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
/* Drier program to test above function*/
int main()
{
int t,a,n;
string x;
cin>>t;
while(t--)
{
maincount=0;
scanf("%d",&n);
struct node *root = NULL;
tr1::unordered_map<string,int> y;
for (int i = 0; i < n; i++)
{
cin>>x;
y[x]=i;
}
for (int i = 0; i < n; i++)
{
cin>>x;
a=y[x];
root=insert(root,a);
//cout<<z[i]<<" : " ;
}
cout<<maincount<<endl;
}
return 0;
}