-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathsubmission.py
138 lines (116 loc) · 5.26 KB
/
submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import sys
sys.path.append('core')
import argparse
import os
import cv2
import numpy as np
import torch
import time
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from config.parser import parse_args
import datasets
from raft import RAFT
from tqdm import tqdm
from utils.flow_viz import flow_to_image
from utils import frame_utils
from utils.utils import load_ckpt, InputPadder
def forward_flow(args, model, image1, image2):
output = model(image1, image2, iters=args.iters, test_mode=True)
flow_final = output['flow'][-1]
info_final = output['info'][-1]
return flow_final, info_final
def calc_flow(args, model, image1, image2):
img1 = F.interpolate(image1, scale_factor=2 ** args.scale, mode='bilinear', align_corners=False)
img2 = F.interpolate(image2, scale_factor=2 ** args.scale, mode='bilinear', align_corners=False)
H, W = img1.shape[2:]
flow, info = forward_flow(args, model, img1, img2)
flow_down = F.interpolate(flow, scale_factor=0.5 ** args.scale, mode='bilinear', align_corners=False) * (0.5 ** args.scale)
info_down = F.interpolate(info, scale_factor=0.5 ** args.scale, mode='area')
return flow_down, info_down
@torch.no_grad()
def create_spring_submission(args, model, output_path='../spring_submission'):
""" Create submission for the Sintel leaderboard """
test_dataset = datasets.SpringFlowDataset(split='test', aug_params=None)
args = args_list[0]
pbar = tqdm(total=len(test_dataset))
for test_id in range(len(test_dataset)):
image1, image2, extra_info = test_dataset[test_id]
frame, scene, cam, direction = extra_info
image1 = image1[None].cuda()
image2 = image2[None].cuda()
flow, info = calc_flow(args, model, image1, image2)
flow = flow[0].permute(1, 2, 0).cpu().numpy()
flow_gt_vis = flow_to_image(flow, convert_to_bgr=True)
output_dir = os.path.join(output_path, scene, f"flow_{direction}_{cam}")
output_file = os.path.join(output_dir, f"flow_{direction}_{cam}_{frame:04d}.flo5")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
cv2.imwrite(os.path.join(output_dir, f"flow_{direction}_{cam}_{frame:04d}.png"), flow_gt_vis)
frame_utils.writeFlo5File(flow, output_file)
pbar.update(1)
pbar.close()
@torch.no_grad()
def create_sintel_submission(args, model, output_path='../sintel_submission'):
""" Create submission for the Sintel leaderboard """
for dstype in ['clean', 'final']:
test_dataset = datasets.MpiSintel(split='test', aug_params=None, dstype=dstype)
flow_prev, sequence_prev = None, None
pbar = tqdm(total=len(test_dataset))
for test_id in range(len(test_dataset)):
image1, image2, (sequence, frame) = test_dataset[test_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
flow, info = calc_flow(args, model, image1, image2)
flow = flow[0].permute(1, 2, 0).cpu().numpy()
flow_gt_vis = flow_to_image(flow, convert_to_bgr=True)
output_dir = os.path.join(output_path, dstype, sequence)
output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame+1))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
frame_utils.writeFlow(output_file, flow)
cv2.imwrite(os.path.join(output_dir, f"frame{frame+1}.png"), flow_gt_vis)
sequence_prev = sequence
pbar.update(1)
pbar.close()
@torch.no_grad()
def create_kitti_submission(args, model, output_path='../kitti_submission'):
""" Create submission for the Sintel leaderboard """
test_dataset = datasets.KITTI(split='testing', aug_params=None)
if not os.path.exists(output_path):
os.makedirs(output_path)
pbar = tqdm(total=len(test_dataset))
for test_id in range(len(test_dataset)):
image1, image2, (frame_id, ) = test_dataset[test_id]
image1 = image1[None].cuda()
image2 = image2[None].cuda()
flow, info = calc_flow(args, model, image1, image2)
flow = flow[0].permute(1, 2, 0).cpu().numpy()
output_filename = os.path.join(output_path, frame_id)
flow_gt_vis = flow_to_image(flow, convert_to_bgr=True)
cv2.imwrite(os.path.join(output_path, f"frame{frame_id}"), flow_gt_vis)
frame_utils.writeFlowKITTI(output_filename, flow)
pbar.update(1)
pbar.close()
def eval(args):
args.gpus = [0]
model = RAFT(args)
load_ckpt(model, args.model)
model = model.cuda()
model.eval()
with torch.no_grad():
if args.dataset == 'spring':
create_spring_submission(args, model, output_path='../spring_submission')
elif args.dataset == 'sintel':
create_sintel_submission(args, model, output_path='../sintel_submission')
elif args.dataset == 'kitti':
create_kitti_submission(args, model, output_path='../kitti_submission')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str)
parser.add_argument('--model', help='checkpoint path', required=True, type=str)
args = parse_args(parser)
eval(args)
if __name__ == '__main__':
main()