-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_loader.py
309 lines (269 loc) · 8.86 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import logging
import os
import pickle
import time
import torch
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from census_datasets import ACSIncome_categories
from folktables import (ACSDataSource, ACSEmployment, ACSIncome,
ACSPublicCoverage, generate_categories)
STATE_LIST = [
"AL",
"AK",
"AZ",
"AR",
"CA",
"CO",
"CT",
"DE",
"FL",
"GA",
"HI",
"ID",
"IL",
"IN",
"IA",
"KS",
"KY",
"LA",
"ME",
"MD",
"MA",
"MI",
"MN",
"MS",
"MO",
"MT",
"NE",
"NV",
"NH",
"NJ",
"NM",
"NY",
"NC",
"ND",
"OH",
"OK",
"OR",
"PA",
"RI",
"SC",
"SD",
"TN",
"TX",
"UT",
"VT",
"VA",
"WA",
"WV",
"WI",
"WY",
"PR",
]
def get_raw_data_by_client(state, args, survey_year="2018"):
data_source = ACSDataSource(
survey_year=survey_year,
horizon="1-Year",
survey="person",
root_dir=args.data_cache_dir + "/%s/%s" % (survey_year, "1-Year"),
)
definition_df = data_source.get_definitions(download=True)
public_categories = generate_categories(
features=ACSPublicCoverage.features, definition_df=definition_df
)
employment_categories = generate_categories(
features=ACSEmployment.features, definition_df=definition_df
)
acs_data = data_source.get_data(states=[state], download=True)
if args.task == "employment":
x, y, s = ACSEmployment.df_to_pandas(
acs_data, categories=employment_categories, dummies=True
)
x, y, s = x.to_numpy(), y.to_numpy(), s.to_numpy()
print(x.shape)
elif args.task == "income" and args.attribute == "race":
start_time = time.time()
x, y, s = ACSIncome.df_to_pandas(
acs_data, categories=ACSIncome_categories, dummies=True
)
x, y, s = x.to_numpy(), y.to_numpy(), s.to_numpy()
print(time.time() - start_time)
elif args.task == "health":
x, y, s = ACSPublicCoverage.df_to_pandas(
acs_data, categories=public_categories, dummies=True
)
x, y, s = x.to_numpy(), y.to_numpy(), s.to_numpy()
print(x.shape)
return x, y, s
def partition_dataset(y, args):
all_index = [i for i in range(y.shape[0])]
num_train = int(args.partition.split("_")[0])
num_test = int(args.partition.split("_")[1])
num_val = int(args.partition.split("_")[2])
r_train = num_train / (num_test + num_train + num_val)
r_test = num_test / (num_test + num_train + num_val)
r_val = num_val / (num_test + num_train + num_val)
if len(all_index) < num_train + num_test + num_val:
num_train = int(len(all_index) * r_train)
num_test = int(len(all_index) * r_test)
num_val = int(len(all_index) * r_val)
s_train, s_all_test = train_test_split(
all_index, train_size=int(num_train), random_state=args.random_seed
)
s_test, s_val = train_test_split(
s_all_test, train_size=int(num_test), random_state=args.random_seed
)
unselected_index = [
i for i in all_index if i not in s_train and i not in s_test and i not in s_val
]
return s_train, s_test, s_val, unselected_index
def get_dataloader(client_idx, args=None):
task = args.task
random_seed = args.random_seed
state = STATE_LIST[client_idx]
x, y, s = get_raw_data_by_client(state, args)
train_index, test_index, val_index, unselected_index = partition_dataset(y, args)
sc = StandardScaler()
x = sc.fit_transform(x)
le = LabelEncoder()
y = le.fit_transform(y.ravel())
test_dataset = torch.utils.data.TensorDataset(
torch.tensor(x[test_index], dtype=torch.float),
torch.tensor(y[test_index], dtype=torch.long),
torch.tensor(s[test_index], dtype=torch.long),
)
validation_dataset = torch.utils.data.TensorDataset(
torch.tensor(x[val_index], dtype=torch.float),
torch.tensor(y[val_index], dtype=torch.long),
torch.tensor(s[val_index], dtype=torch.long),
)
train_dataset = torch.utils.data.TensorDataset(
torch.tensor(x[train_index], dtype=torch.float),
torch.tensor(y[train_index], dtype=torch.long),
torch.tensor(s[train_index], dtype=torch.long),
)
unselected = {
"x": x[unselected_index],
"y": y[unselected_index],
"s": s[unselected_index],
"num": len(s[unselected_index]),
}
return train_dataset, test_dataset, validation_dataset, unselected
def load_partition_data_census(users, args):
filepath = "{}/data.pkl".format(args.run_folder)
logging.info(filepath)
if args.load_dataset and os.path.isfile(filepath):
with open(filepath, "rb") as f:
dataset = pickle.load(f)
return dataset
else:
train_data_local_dict = dict()
test_data_local_dict = dict()
train_data_local_num_dict = dict()
test_data_local_num_dict = dict()
val_data_local_dict = dict()
train_data_global_dataset = list()
test_data_global_dataset = list()
val_data_global_dataset = list()
unselected_data_local_dict = dict()
train_data_num = 0
test_data_num = 0
for client_idx in users: # only for those users
(
train_dataset_local,
test_dataset_local,
val_dataset_local,
unselected,
) = get_dataloader(client_idx, args)
train_data_global_dataset.append(train_dataset_local)
test_data_global_dataset.append(test_dataset_local)
val_data_global_dataset.append(val_dataset_local)
train_num = len(train_dataset_local)
test_num = len(test_dataset_local)
train_data_num += train_num
test_data_num += test_num
train_data_local_num_dict[client_idx] = train_num
test_data_local_num_dict[client_idx] = test_num
logging.info(
"client_idx = %d, local_trainig_sample_number = %d, local_test_sample_number = %d"
% (client_idx, len(train_dataset_local), len(test_dataset_local))
)
train_data_local_dict[client_idx] = torch.utils.data.DataLoader(
train_dataset_local,
batch_size=args.batch_size,
num_workers=0,
shuffle=True,
pin_memory=True,
)
test_data_local_dict[client_idx] = torch.utils.data.DataLoader(
test_dataset_local,
batch_size=args.batch_size,
num_workers=0,
shuffle=False,
pin_memory=True,
)
val_data_local_dict[client_idx] = torch.utils.data.DataLoader(
val_dataset_local,
batch_size=args.batch_size,
num_workers=0,
shuffle=False,
pin_memory=True,
)
unselected_data_local_dict[client_idx] = unselected
train_data_global_dataset = torch.utils.data.ConcatDataset(
train_data_global_dataset
)
test_data_global_dataset = torch.utils.data.ConcatDataset(
test_data_global_dataset
)
val_data_global_dataset = torch.utils.data.ConcatDataset(
val_data_global_dataset
)
train_data_global = torch.utils.data.DataLoader(
train_data_global_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=False,
)
test_data_global = torch.utils.data.DataLoader(
test_data_global_dataset, batch_size=args.batch_size, shuffle=False
)
val_data_global = torch.utils.data.DataLoader(
val_data_global_dataset, batch_size=args.batch_size, shuffle=False
)
class_num = 2
dataset = [
len(users),
users,
train_data_num,
test_data_num,
train_data_global,
test_data_global,
val_data_global,
train_data_local_num_dict,
test_data_local_num_dict,
train_data_local_dict,
test_data_local_dict,
val_data_local_dict,
class_num,
unselected_data_local_dict,
]
with open(filepath, "wb") as f:
pickle.dump(dataset, f)
return (
len(users),
users,
train_data_num,
test_data_num,
train_data_global,
test_data_global,
val_data_global,
train_data_local_num_dict,
test_data_local_num_dict,
train_data_local_dict,
test_data_local_dict,
val_data_local_dict,
class_num,
unselected_data_local_dict,
)