-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlang.py
292 lines (236 loc) · 7.54 KB
/
lang.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
This file contains the implementation of a simple interpreter of low-level
instructions. The interpreter takes a program, represented as its first
instruction, plus an environment, which is a stack of bindings. Bindings are
pairs of variable names and values. New bindings are added to the stack
whenever new variables are defined. Bindings are never removed from the stack.
In this way, we can inspect the history of state transformations caused by the
interpretation of a program.
This file uses doctests all over. To test it, just run python 3 as follows:
"python3 -m doctest main.py". The program uses syntax that is excluive of
Python 3. It will not work with standard Python 2.
"""
from collections import deque
from abc import ABC, abstractmethod
class Env:
"""
A table that associates variables with values. The environment is
implemented as a stack, so that previous bindings of a variable V remain
available in the environment if V is overassigned.
Example:
>>> e = Env()
>>> e.set("a", 2)
>>> e.set("a", 3)
>>> e.get("a")
3
>>> e = Env({"b": 5})
>>> e.set("a", 2)
>>> e.get("a") + e.get("b")
7
"""
def __init__(s, initial_args={}):
s.env = deque()
for var, value in initial_args.items():
s.env.appendleft((var, value))
def get(self, var):
"""
Finds the first occurrence of variable 'var' in the environment stack,
and returns the value associated with it.
"""
val = next((value for (e_var, value) in self.env if e_var == var), None)
if val is not None:
return val
else:
raise LookupError(f"Absent key {var}")
def set(s, var, value):
"""
This method adds 'var' to the environment, by placing the binding
'(var, value)' onto the top of the environment stack.
"""
s.env.appendleft((var, value))
def dump(s):
"""
Prints the contents of the environment. This method is mostly used for
debugging purposes.
"""
for var, value in s.env:
print(f"{var}: {value}")
class Inst(ABC):
"""
The representation of instructions. All that an instruction has, that is
common among all the instructions, is the next_inst attribute. This
attribute determines the next instruction that will be fetched after this
instruction runs. Also, every instruction has an index, which is always
different. The index is incremented whenever a new instruction is created.
"""
next_index = 0
def __init__(self):
self.nexts = []
self.preds = []
self.ID = Inst.next_index
Inst.next_index += 1
def add_next(self, next_inst):
self.nexts.append(next_inst)
next_inst.preds.append(self)
@classmethod
@abstractmethod
def definition(self):
raise NotImplementedError
@classmethod
@abstractmethod
def uses(self):
raise NotImplementedError
def get_next(self):
if len(self.nexts) > 0:
return self.nexts[0]
else:
return None
class BinOp(Inst):
"""
The general class of binary instructions. These instructions define a
value, and use two values. As such, it contains a routine to extract the
defined value, and the list of used values.
"""
def __init__(s, dst, src0, src1):
s.dst = dst
s.src0 = src0
s.src1 = src1
super().__init__()
@classmethod
@abstractmethod
def get_opcode(self):
raise NotImplementedError
def definition(s):
return set([s.dst])
def uses(s):
return set([s.src0, s.src1])
def __str__(self):
op = self.get_opcode()
inst_s = f"{self.ID}: {self.dst} = {self.src0}{op}{self.src1}"
pred_s = f"\n P: {', '.join([str(inst.ID) for inst in self.preds])}"
next_s = f"\n N: {self.nexts[0].ID if len(self.nexts) > 0 else ''}"
return inst_s + pred_s + next_s
class Add(BinOp):
"""
Example:
>>> a = Add("a", "b0", "b1")
>>> e = Env({"b0":2, "b1":3})
>>> a.eval(e)
>>> e.get("a")
5
>>> a = Add("a", "b0", "b1")
>>> a.get_next() == None
True
"""
def eval(self, env):
env.set(self.dst, env.get(self.src0) + env.get(self.src1))
def get_opcode(self):
return "+"
class Mul(BinOp):
"""
Example:
>>> a = Mul("a", "b0", "b1")
>>> e = Env({"b0":2, "b1":3})
>>> a.eval(e)
>>> e.get("a")
6
"""
def eval(s, env):
env.set(s.dst, env.get(s.src0) * env.get(s.src1))
def get_opcode(self):
return "*"
class Lth(BinOp):
"""
Example:
>>> a = Lth("a", "b0", "b1")
>>> e = Env({"b0":2, "b1":3})
>>> a.eval(e)
>>> e.get("a")
True
"""
def eval(s, env):
env.set(s.dst, env.get(s.src0) < env.get(s.src1))
def get_opcode(self):
return "<"
class Geq(BinOp):
"""
Example:
>>> a = Geq("a", "b0", "b1")
>>> e = Env({"b0":2, "b1":3})
>>> a.eval(e)
>>> e.get("a")
False
"""
def eval(s, env):
env.set(s.dst, env.get(s.src0) >= env.get(s.src1))
def get_opcode(self):
return ">="
class Bt(Inst):
"""
This is a Branch-If-True instruction, which diverts the control flow to the
'true_dst' if the predicate 'pred' is true, and to the 'false_dst'
otherwise.
Example:
>>> e = Env({"t": True, "x": 0})
>>> a = Add("x", "x", "x")
>>> m = Mul("x", "x", "x")
>>> b = Bt("t", a, m)
>>> b.eval(e)
>>> b.get_next() == a
True
"""
def __init__(s, cond, true_dst=None, false_dst=None):
super().__init__()
s.cond = cond
s.nexts = [true_dst, false_dst]
if true_dst != None:
true_dst.preds.append(s)
if false_dst != None:
false_dst.preds.append(s)
def definition(s):
return set()
def uses(s):
return set([s.cond])
def add_true_next(s, true_dst):
s.nexts[0] = true_dst
true_dst.preds.append(s)
def add_next(s, false_dst):
s.nexts[1] = false_dst
false_dst.preds.append(s)
def eval(s, env):
"""
The evaluation of the condition sets the next_iter to the instruction.
This value determines which successor instruction is to be evaluated.
Any values greater than 0 are evaluated as True, while 0 corresponds to
False.
"""
if env.get(s.cond):
s.next_iter = 0
else:
s.next_iter = 1
def get_next(s):
return s.nexts[s.next_iter]
def __str__(self):
inst_s = f"{self.ID}: bt {self.cond}"
pred_s = f"\n P: {', '.join([str(inst.ID) for inst in self.preds])}"
next_s = f"\n NT:{self.nexts[0].ID} NF:{self.nexts[1].ID}"
return inst_s + pred_s + next_s
def interp(instruction, environment):
"""
This function evaluates a program until there is no more instructions to
evaluate.
Example:
>>> env = Env({"m": 3, "n": 2, "zero": 0})
>>> m_min = Add("answer", "m", "zero")
>>> n_min = Add("answer", "n", "zero")
>>> p = Lth("p", "n", "m")
>>> b = Bt("p", n_min, m_min)
>>> p.add_next(b)
>>> interp(p, env).get("answer")
2
"""
if instruction:
instruction.eval(environment)
return interp(instruction.get_next(), environment)
else:
return environment