-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathupscaler.py
executable file
·302 lines (249 loc) · 12.3 KB
/
upscaler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/env python
# (c) 2024 Niels Provos
#
"""
Upscale Image Tiling
This module provides functionality to upscale an image using a pre-trained deep learning model,
specifically Swin2SR for Super Resolution. The upscaling process breaks the input image into smaller
tiles. Each tile is individually upscaled using the model, and then these upscaled tiles are reassembled
into the final image. The tile-based approach helps manage memory usage and can handle larger
images by processing small parts one at a time.
For better integration of the tiles into the resultant upscaled image, tiles are overlapped and
blended to ensure smoother transitions between tiles.
"""
from PIL import Image
import torch
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution
import numpy as np
from scipy.ndimage import zoom
from utils import torch_get_device, premultiply_alpha_numpy, find_bounding_box
import argparse
class Upscaler:
def __init__(self, model_name="swin2sr", external_model=None):
assert model_name in ["swin2sr", "simple", "inpainting", "stabilityai"]
self.model_name = model_name
self.model = None
self.image_processor = None
self.external_model = external_model
self.tile_size = 512
self.scale_factor = 2
def create_model(self):
if self.model_name == "swin2sr":
self.model, self.image_processor = self.load_swin2sr_model()
elif self.model_name == "simple":
self.model, self.image_processor = None, None
self.tile_size = 512
elif self.model_name == "inpainting":
assert self.external_model is not None
assert self.external_model.get_dimension() is not None
self.model, self.image_processor = self.external_model, None
self.tile_size = self.external_model.get_dimension()//2
elif self.model_name == "stabilityai":
self.model, self.image_processor = self.external_model, None
self.tile_size = 1024
self.scale_factor = 4
def __eq__(self, other):
if not isinstance(other, Upscaler):
return False
return self.model_name == other.model_name
def load_swin2sr_model(self):
# Initialize the image processor and model
image_processor = AutoImageProcessor.from_pretrained(
"caidas/swin2SR-classical-sr-x2-64")
model = Swin2SRForImageSuperResolution.from_pretrained(
"caidas/swin2SR-classical-sr-x2-64")
model.to(torch_get_device())
return model, image_processor
def upscale_image_tiled(self, image, overlap=64, prompt=None, negative_prompt=None):
"""
Upscales an image using a tiled approach.
Args:
image (PIL.Image or np.ndarray): The input image array.
overlap (int, optional): The overlap between adjacent tiles. Defaults to 64.
Returns:
np.ndarray: The upscaled image array.
"""
if isinstance(image, Image.Image):
image = np.array(image)
# initializes parameters we need below
if self.model is None:
self.create_model()
alpha = None
bounding_box = None
if image.shape[2] == 4: # RGBA image
alpha = image[:, :, 3]
bounding_box = find_bounding_box(alpha, padding=0)
# scale the size of the alpha channel using bicubic interpolation
alpha = zoom(alpha, self.scale_factor, order=3)
image = image[:, :, :3] # Remove alpha channel
# crop the image to the bounding box
orig_image = image
image = image[bounding_box[1]:bounding_box[3],
bounding_box[0]:bounding_box[2]]
# Ensure the overlap can be divided by the scale factor
if overlap % self.scale_factor != 0:
overlap = (overlap // self.scale_factor + 1) * self.scale_factor
# Calculate the number of tiles
height, width, _ = image.shape
step_size = self.tile_size - overlap // self.scale_factor
num_tiles_x = (width + step_size - 1) // step_size
num_tiles_y = (height + step_size - 1) // step_size
# Create a new array to store the upscaled result
upscaled_height = height * self.scale_factor
upscaled_width = width * self.scale_factor
upscaled_image = np.zeros(
(upscaled_height, upscaled_width, 3), dtype=np.uint8)
# Iterate over the tiles
for y in range(num_tiles_y):
for x in range(num_tiles_x):
# Calculate the coordinates of the current tile
left = x * step_size
top = y * step_size
right = min(left + self.tile_size, width)
bottom = min(top + self.tile_size, height)
# make sure we process a full tile
if x > 0 and right - left < self.tile_size:
left = right - self.tile_size
assert left >= 0
if y > 0 and bottom - top < self.tile_size:
top = bottom - self.tile_size
assert top >= 0
print(
f"Processing tile ({y}, {x}) with coordinates ({left}, {top}, {right}, {bottom})")
# Extract the current tile from the image
tile = image[top:bottom, left:right]
# XXX - revisit whether we can keep this as a numpy array
tile = Image.fromarray(tile)
cur_width, cur_height = tile.size
if cur_width % 64 != 0 or cur_height % 64 != 0:
new_width = cur_width + (64 - cur_width % 64) if cur_width % 64 != 0 else cur_width
new_height = cur_height + (64 - cur_height % 64) if cur_height % 64 != 0 else cur_height
tile = tile.resize((new_width, new_height))
upscaled_tile = self.upscale_tile(
tile, prompt, negative_prompt)
if tile.size != (cur_width, cur_height):
upscaled_tile = upscaled_tile.resize(
(cur_width * self.scale_factor, cur_height * self.scale_factor))
upscaled_tile = np.array(upscaled_tile)
# Calculate the coordinates to paste the upscaled tile
place_left = left * self.scale_factor
place_top = top * self.scale_factor
place_right = place_left + upscaled_tile.shape[1]
place_bottom = place_top + upscaled_tile.shape[0]
self.integrate_tile(upscaled_tile, upscaled_image, place_left,
place_top, place_right, place_bottom, x, y, overlap)
# Combine the upscaled image with the alpha channel if present
if alpha is not None:
image = zoom(orig_image, (self.scale_factor,
self.scale_factor, 1), order=3)
bounding_box = [
coord * self.scale_factor for coord in bounding_box]
image[bounding_box[1]:bounding_box[3],
bounding_box[0]:bounding_box[2]] = upscaled_image
upscaled_image = np.dstack((image, alpha))
upscaled_image = premultiply_alpha_numpy(upscaled_image)
else:
upscaled_image = Image.fromarray(upscaled_image)
return upscaled_image
@staticmethod
def integrate_tile(tile, image, left, top, right, bottom, tile_x, tile_y, overlap):
height, width, _ = tile.shape
# xxx - should be move before upscaling
if overlap >= height or overlap >= width:
return
# Create an alpha channel for the tile
alpha = np.ones((height, width), dtype=np.float32)
if tile_x > 0 and tile_y > 0:
alpha[:overlap, :overlap] = np.outer(
np.linspace(0, 1, overlap), np.linspace(0, 1, overlap))
if tile_x > 0:
new_alpha = np.tile(np.linspace(0, 1, overlap), (height, 1))
alpha[:, :overlap] = np.minimum(alpha[:, :overlap], new_alpha)
if tile_y > 0:
new_alpha = np.tile(np.linspace(
0, 1, overlap).reshape(-1, 1), (1, width))
alpha[:overlap, :] = np.minimum(alpha[:overlap, :], new_alpha)
# Reshape the alpha channel to match the tile shape
alpha = alpha.reshape(height, width, 1)
# Apply the tile with alpha blending to the image
image[top:bottom, left:right] = (
alpha * tile + (1 - alpha) * image[top:bottom, left:right]).astype(np.uint8)
def upscale_tile(self, tile, prompt=None, negative_prompt=None):
if self.model_name == "swin2sr":
return self._upscale_tile_swin2sr(tile)
elif self.model_name == "simple":
return self._upscale_tile_simple(tile)
elif self.model_name == "inpainting":
return self._upscale_tile_inpainting(tile, prompt, negative_prompt)
elif self.model_name == "stabilityai":
return self._upscale_tile_stabilityai(tile, prompt, negative_prompt)
def _upscale_tile_stabilityai(self, tile, prompt, negative_prompt):
upscaled_image = self.external_model.upscale_image(tile, prompt, negative_prompt=negative_prompt)
width, height = tile.size
upscaled_image = upscaled_image.resize((width * self.scale_factor, height * self.scale_factor), Image.LANCZOS)
return upscaled_image
def _upscale_tile_inpainting(self, tile, prompt, negative_prompt):
rescaled_tile = tile.resize(
(tile.size[0] * 2, tile.size[1] * 2), Image.LANCZOS)
rescaled_tile = np.array(rescaled_tile)
mask_image = np.ones(rescaled_tile.shape[:2], dtype=np.uint8)
mask_image *= 255
scale = 2 if len(prompt) or len(negative_prompt) else 0
tile = self.external_model.inpaint(prompt, negative_prompt, rescaled_tile, mask_image,
strength=0.25, guidance_scale=scale,
num_inference_steps=75,
padding=0, blur_radius=0)
tile = tile.convert("RGB")
return tile
def _upscale_tile_simple(self, tile):
"""
Upscales a tile using a simple bicubic interpolation.
Args:
tile: The input tile to be upscaled.
Returns:
An Image object representing the upscaled tile.
"""
return tile.resize((tile.width * 2, tile.height * 2), Image.BICUBIC)
def _upscale_tile_swin2sr(self, tile):
"""
Upscales a tile using a given model and image processor.
Args:
model: The model used for upscaling the tile.
image_processor: The image processor used to preprocess the tile.
tile: The input tile to be upscaled.
Returns:
An Image object representing the upscaled tile.
"""
inputs = self.image_processor(tile, return_tensors="pt")
inputs = {name: tensor.to(self.model.device)
for name, tensor in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
output = outputs.reconstruction.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8)
return Image.fromarray(output)
if __name__ == "__main__":
from inpainting import InpaintingModel
from stabilityai import StabilityAI
parser = argparse.ArgumentParser(description="Image Upscaling")
parser.add_argument("-i", "--input", type=str,
default='input.jpg',
help="Input image path")
parser.add_argument("-p", "--prompt", type=str,
default='a sci-fi robot in a futuristic laboratory')
parser.add_argument("--api-key", type=str)
args = parser.parse_args()
if args.api_key:
model_name = "stabilityai"
model = StabilityAI(args.api_key)
else:
model_name = "inpainting"
model = InpaintingModel()
model.load_model()
upscaler = Upscaler(model_name=model_name, external_model=model)
image = Image.open(args.input)
upscaled_image = upscaler.upscale_image_tiled(
image, overlap=64,
prompt=args.prompt,)
upscaled_image.save("upscaled_image.png")