Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

运行eval.py文件 #8

Open
Aerian222 opened this issue Nov 7, 2024 · 4 comments
Open

运行eval.py文件 #8

Aerian222 opened this issue Nov 7, 2024 · 4 comments

Comments

@Aerian222
Copy link

谢谢您的工作,让我受益颇多。我尝试使用您公布的预训练权重进行测试,按照你的流程,我修改了如下文件eval.yaml,

defaults:

  • visualization: eval
    num_workers: 0
    batch_size: 1
    cuda: 0
    weight_name: "PointGroup-PAPER" # Used during resume, select with model to load from [miou, macc, acc..., latest]
    enable_cudnn: True
    checkpoint_dir: "outputs" # "{your_output_log_path}/outputs/2020-01-28/11-04-13"
    model_name: PointGroup-PAPER
    precompute_multi_scale: True # Compute multiscate features on cpu for faster training / inference
    enable_dropout: False
    voting_runs: 1
    data:
    fold: ['data_set1_5classes/treeinsfused/raw/CULS/CULS_plot_2_annotated_test.ply']
    tracker_options: # Extra options for the tracker
    full_res: True
    make_submission: True
    ply_output: "vote1regular.ply"
    hydra:
    run:
    dir: ${checkpoint_dir}/eval/${now:%Y-%m-%d_%H-%M-%S}

但是当我运行python eval.py时,显示如下错误

[2024-11-07 14:28:29,657][torch_points3d.trainer][INFO] - DEVICE : cuda
[2024-11-07 14:28:29,664][torch_points3d.datasets.dataset_factory][ERROR] - This should happen only during testing
Traceback (most recent call last):
File "eval.py", line 13, in main
trainer = Trainer(cfg)
File "/root/autodl-tmp/ForAINet/PointCloudSegmentation/torch_points3d/trainer.py", line 48, in init
self._initialize_trainer()
File "/root/autodl-tmp/ForAINet/PointCloudSegmentation/torch_points3d/trainer.py", line 97, in _initialize_trainer
self._dataset: BaseDataset = instantiate_dataset(self._cfg.data)
File "/root/autodl-tmp/ForAINet/PointCloudSegmentation/torch_points3d/datasets/dataset_factory.py", line 45, in instantiate_dataset
dataset_cls = get_dataset_class(dataset_config)
File "/root/autodl-tmp/ForAINet/PointCloudSegmentation/torch_points3d/datasets/dataset_factory.py", line 20, in get_dataset_class
dataset_paths = dataset_class.split(".")
AttributeError: 'NoneType' object has no attribute 'split'

这似乎是 配置文件中缺失class参数,是eval.yaml需要加其他参数吗

@bxiang233
Copy link
Collaborator

另外我直接测试的步骤如下: 1.下载您提供的pretrained model权重,放在outputs文件夹下; 2.修改eval.yaml文件如下 defaults: visualization: eval num_workers: 0 batch_size: 1 cuda: 0 weight_name: "PointGroup-PAPER" # Used during resume, select with model to load from [miou, macc, acc..., latest] enable_cudnn: True checkpoint_dir: "outputs" # "{your_output_log_path}/outputs/2020-01-28/11-04-13" model_name: PointGroup-PAPER precompute_multi_scale: True # Compute multiscate features on cpu for faster training / inference enable_dropout: False voting_runs: 1 data: fold: ['data_set1_5classes/treeinsfused/raw/CULS/CULS_plot_2_annotated_test.ply'] tracker_options: # Extra options for the tracker full_res: True make_submission: True ply_output: "vote1regular.ply" hydra: run: dir: ${checkpoint_dir}/eval/${now:%Y-%m-%d_%H-%M-%S} 3.运行python eval.py指令

谢谢您的答复!

你好~我没见过这个错误……你试一下把模型的路径和数据的路径改成绝对路径呢?

@Aerian222
Copy link
Author

另外我直接测试的步骤如下: 1.下载您提供的pretrained model权重,放在outputs文件夹下; 2.修改eval.yaml文件如下 defaults: visualization: eval num_workers: 0 batch_size: 1 cuda: 0 weight_name: "PointGroup-PAPER" # Used during resume, select with model to load from [miou, macc, acc..., latest] enable_cudnn: True checkpoint_dir: "outputs" # "{your_output_log_path}/outputs/2020-01-28/11-04-13" model_name: PointGroup-PAPER precompute_multi_scale: True # Compute multiscate features on cpu for faster training / inference enable_dropout: False voting_runs: 1 data: fold: ['data_set1_5classes/treeinsfused/raw/CULS/CULS_plot_2_annotated_test.ply'] tracker_options: # Extra options for the tracker full_res: True make_submission: True ply_output: "vote1regular.ply" hydra: run: dir: ${checkpoint_dir}/eval/${now:%Y-%m-%d_%H-%M-%S} 3.运行python eval.py指令
谢谢您的答复!

你好~我没见过这个错误……你试一下把模型的路径和数据的路径改成绝对路径呢?

非常感谢您的建议,现在可以运行了!在运行后的结果中,Instance_results_withColor_0.ply是单木实例分割的结果,vote1regular.ply_0.ply是语义分割的结果?但是为什么两个分割文件的点数不同,甚至语义分割的点数低于实例分割结果好几倍!此外,在可视化后能清楚的看见二者点密度相差很多,这是什么原因呢?再次谢谢您的工作,非常棒!

@bxiang233
Copy link
Collaborator

另外我直接测试的步骤如下: 1.下载您提供的pretrained model权重,放在outputs文件夹下; 2.修改eval.yaml文件如下 defaults: visualization: eval num_workers: 0 batch_size: 1 cuda: 0 weight_name: "PointGroup-PAPER" # Used during resume, select with model to load from [miou, macc, acc..., latest] enable_cudnn: True checkpoint_dir: "outputs" # "{your_output_log_path}/outputs/2020-01-28/11-04-13" model_name: PointGroup-PAPER precompute_multi_scale: True # Compute multiscate features on cpu for faster training / inference enable_dropout: False voting_runs: 1 data: fold: ['data_set1_5classes/treeinsfused/raw/CULS/CULS_plot_2_annotated_test.ply'] tracker_options: # Extra options for the tracker full_res: True make_submission: True ply_output: "vote1regular.ply" hydra: run: dir: ${checkpoint_dir}/eval/${now:%Y-%m-%d_%H-%M-%S} 3.运行python eval.py指令
谢谢您的答复!

你好~我没见过这个错误……你试一下把模型的路径和数据的路径改成绝对路径呢?

非常感谢您的建议,现在可以运行了!在运行后的结果中,Instance_results_withColor_0.ply是单木实例分割的结果,vote1regular.ply_0.ply是语义分割的结果?但是为什么两个分割文件的点数不同,甚至语义分割的点数低于实例分割结果好几倍!此外,在可视化后能清楚的看见二者点密度相差很多,这是什么原因呢?再次谢谢您的工作,非常棒!

哈喽,vote1regular是voxolization之后的,Semantic_results_forEval_{}.ply是和Instance_Results_forEval_{}.ply是和输入的点云点数一致的结果。

计算最终的metrics也是用完整点云计算的:
(评估最终精度的代码:)PointCloudSegmentation/evaluation_stats_FOR.py

@Aerian222
Copy link
Author

另外我直接测试的步骤如下: 1.下载您提供的pretrained model权重,放在outputs文件夹下; 2.修改eval.yaml文件如下 defaults: visualization: eval num_workers: 0 batch_size: 1 cuda: 0 weight_name: "PointGroup-PAPER" # Used during resume, select with model to load from [miou, macc, acc..., latest] enable_cudnn: True checkpoint_dir: "outputs" # "{your_output_log_path}/outputs/2020-01-28/11-04-13" model_name: PointGroup-PAPER precompute_multi_scale: True # Compute multiscate features on cpu for faster training / inference enable_dropout: False voting_runs: 1 data: fold: ['data_set1_5classes/treeinsfused/raw/CULS/CULS_plot_2_annotated_test.ply'] tracker_options: # Extra options for the tracker full_res: True make_submission: True ply_output: "vote1regular.ply" hydra: run: dir: ${checkpoint_dir}/eval/${now:%Y-%m-%d_%H-%M-%S} 3.运行python eval.py指令
谢谢您的答复!

你好~我没见过这个错误……你试一下把模型的路径和数据的路径改成绝对路径呢?

非常感谢您的建议,现在可以运行了!在运行后的结果中,Instance_results_withColor_0.ply是单木实例分割的结果,vote1regular.ply_0.ply是语义分割的结果?但是为什么两个分割文件的点数不同,甚至语义分割的点数低于实例分割结果好几倍!此外,在可视化后能清楚的看见二者点密度相差很多,这是什么原因呢?再次谢谢您的工作,非常棒!

哈喽,vote1regular是voxolization之后的,Semantic_results_forEval_{}.ply是和Instance_Results_forEval_{}.ply是和输入的点云点数一致的结果。

计算最终的metrics也是用完整点云计算的: (评估最终精度的代码:)PointCloudSegmentation/evaluation_stats_FOR.py

谢谢您,我明白了!您回复的很快,祝好!非常棒的工作!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants