-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathday3-2-detection.Rmd
733 lines (547 loc) · 26.5 KB
/
day3-2-detection.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
---
title: "The Detection Process"
author: "Peter Solymos <[email protected]>"
---
## Introduction
As part of the detection process, a skilled observer counts individual birds at a count station. New individuals are assigned to time and distance categories, the type of behavior also registered. During this process, auditory cues travel through the distance between the bird and the observer. As the pover of the sound fades away, the chances of being detected also decreases. If the detection process is based on visual detections, vegetation can block line of sight, etc. In this chapter, we scrutinize how this detection process contributes to the factor $C$.
## Prerequisites
```{r det-libs,message=TRUE,warning=FALSE}
library(bSims) # simulations
library(detect) # multinomial models
library(Distance) # distance sampling
load("data/josm-data.rda") # JOSM data
source("src/functions.R") # some useful stuff
```
## Distance functions
The distance function ($g(d)$ describes the probability of detecting an individual given the distance between the observer and the individual ($d$). The detection itself is often triggered by visual or auditory cues, and thus depend on the individuals being available for detection (and of course being present in the survey area).
Distance functions have some characteristics:
- It is a monotonic decreasing function of distance,
- $g(0)=1$: detection at 0 distance is perfect.
Here are some common distance function and rationale for their use (i.e. mechanisms leading to such distance shapes):
1. Negative Exponential: a one-parameter function ($g(d) = e^{-d/\tau}$), probability quickly decreases with distance, this mirrors sound attenuation under spherical spreading, so might be a suitable form for acoustic recording devices (we will revisit this later), but not a very useful form for human based counts, as explained below;
2. Half-Normal: this is also a one-parameter function ($g(d) = e^{-(d/\tau)^2}$) where probability initially remain high (the _shoulder_), reflecting an increased chance of detecting individuals closer to the observer, this form has also sone practical advantages that we will discuss shortly ($\tau^2$ is variance of the unfolded Normal distribution, $\tau^2/2$ is the variance of the Half-Normal distribution -- both the Negative Exponential and the Half-Normal being special cases of $g(d) = e^{-(d/\tau)^b}$ that have the parameter $b$ [$b > 0$] affecting the shoulder);
3. Hazard rate: this is a two-parameter model ($g(d) = 1-e^{-(d/\tau)^-b}$) that have the parameter $b$ ($b > 0$) affecting the more pronounced and sharp shoulder.
```{r fig.show='hold',out.width='33%'}
d <- seq(0, 2, 0.01)
plot(d, exp(-d/0.8), type="l", col=4, ylim=c(0,1),
xlab="Distance (100 m)", ylab="P(detection)", main="Negative Exponential")
plot(d, exp(-(d/0.8)^2), type="l", col=4, ylim=c(0,1),
xlab="Distance (100 m)", ylab="P(detection)", main="Half-Normal")
plot(d, 1-exp(-(d/0.8)^-4), type="l", col=4, ylim=c(0,1),
xlab="Distance (100 m)", ylab="P(detection)", main="Hazard rate")
```
## Exercise
Try different values of $b$ to explore the different shapes of the Hazard rate function.
Write your own code (`plot(d, exp(-(d/<tau>)^<b>), type="l", ylim=c(0,1))`), or run `bSims::run_app("distfunH")`.
```{r eval=FALSE}
d <- seq(0, 2, 0.01)
tau <- 1
b <- 1
plot(d, exp(-(d/tau)^b), type="l", ylim=c(0,1))
bSims::run_app("distfunH")
```
As we saw before, the Shiny app can be used to copy the distance function that we can use later in our simulations.
## Simulations
We will apply this new found knowledge to our bSims world: the observer is in the middle of the landscape, and each vocalization event is aither detected or not, depending on the distance. Units of `tau` are given on 100 m units, so that corresponding density estimates will refer to ha as the unit area.
In this example, we want all individuals to be equally available, so we are going to override all behavioral aspects of the simulations by the `initial_location` argument when calling `bsims_animate`. We set `density` and `tau` high enough to get many detections in this example.
```{r}
tau <- 2
set.seed(123)
l <- bsims_init()
a <- bsims_populate(l, density=10)
b <- bsims_animate(a, initial_location=TRUE)
(o <- bsims_detect(b, tau=tau))
```
```{r fig.width=8,fig.height=8}
plot(o)
```
## Distance sampling
The distribution of the _observed distances_ is a product of detectability and the distribution of the individuals with respect to the point where the observer is located. For point counts, area increases linearly with radial distance, implying a triangular distribution with respect to the point ($h(d)=\pi 2 d /A=\pi 2 d / \pi r_{max}^2=2 d / r_{max}^2$, where $A$ is a circular survey area with truncation distance $r_{max}$). The product $g(d) h(d)$ gives the density function of the observed distances.
```{r}
g <- function(d, tau, b=2, hazard=FALSE) {
if (hazard)
1-exp(-(d/tau)^-b) else exp(-(d/tau)^b)
}
h <- function(d, rmax) {
2*d/rmax^2
}
```
```{r fig.show='hold',out.width='33%'}
rmax <- 4
d <- seq(0, rmax, 0.01)
plot(d, g(d, tau), type="l", col=4, ylim=c(0,1),
xlab="d", ylab="g(d)", main="Prob. of detection")
plot(d, h(d, rmax), type="l", col=4,
xlab="d", ylab="h(d)", main="PDF of distances")
plot(d, g(d, tau) * h(d, rmax), type="l", col=4,
xlab="d", ylab="g(d) h(d)", main="Density of observed distances")
```
The object `da` contains the distances to all the nests based on our bSims object, we use this to display the distribution of available distances:
```{r}
da <- sqrt(rowSums(a$nests[,c("x", "y")]^2))
hist(da[da <= rmax], freq=FALSE, xlim=c(0, rmax),
xlab="Available distances (d <= r_max)", main="")
curve(2*x/rmax^2, add=TRUE, col=2)
```
The `get_detections` function returns a data frame with the detected events (in our case just the nest locations): `$d` is the distance.
```{r}
head(dt <- get_detections(o))
```
The following piece of code plots the probability density of the observed distances within the truncation distance $r_{max}$, thus we need to standardize the $g(r) h(r)$ function by the sum of the integral:
```{r}
f <- function(d, tau, b=2, hazard=FALSE, rmax=1)
g(d, tau, b, hazard) * h(d, rmax)
tot <- integrate(f, lower=0, upper=rmax, tau=tau, rmax=rmax)$value
hist(dt$d[dt$d <= rmax], freq=FALSE, xlim=c(0, rmax),
xlab="Observed distances (r <= rmax)", main="")
curve(f(x, tau=tau, rmax=rmax) / tot, add=TRUE, col=2)
```
In case of the Half-Normal, we can linearize the relationship by taking the log of the distance function: $log(g(d)) =log(e^{-(d/\tau)^2})= -(d / \tau)^2 = x \frac{1}{\tau^2} = 0 + x \beta$. Consequently, we can use GLM to fit a model with $x = -d^2$ as predictor and no intercept, and estimate $\hat{\beta}$ and $\hat{\tau}=\sqrt{1/\hat{\beta}}$.
For this method to work, we need to know the observed and unobserved distances as well, which makes this approach of low utility in practice when location of unobserved individuals is unknown. But we can at least check our bSims data:
```{r}
dat <- data.frame(
distance=da,
x=-da^2,
detected=ifelse(rownames(o$nests) %in% dt$i, 1, 0))
summary(dat)
mod <- glm(detected ~ x - 1, data=dat, family=binomial(link="log"))
c(true=tau, estimate=sqrt(1/coef(mod)))
```
```{r}
curve(exp(-(x/sqrt(1/coef(mod)))^2),
xlim=c(0,max(dat$distance)), ylim=c(0,1),
xlab="Distance (100 m)", ylab="P(detection)")
curve(exp(-(x/tau)^2), lty=2, add=TRUE)
rug(dat$distance[dat$detected == 0], side=1, col=4)
rug(dat$distance[dat$detected == 1], side=3, col=2)
legend("topright", bty="n", lty=c(2,1),
legend=c("True", "Estimated"))
```
The Distance package offers various tools to fit models to observed distance data. See [here](https://workshops.distancesampling.org/duke-spatial-2015/practicals/1-detection-functions-solutions.html) for a tutorial. The following script fits the Half-Normal (`key = "hn"`) without ajustments (`adjustment=NULL`) to observed distance data from truncated point transect. It estimates $\sigma = \sqrt{\tau}$:
```{r}
dd <- ds(dt$d, truncation = rmax, transect="point",
key = "hn", adjustment=NULL)
c(true=tau, estimate=exp(dd$ddf$par)^2)
```
**BREAK**
## Average detection
To calculate the average probability of detecting individuals within a circle with truncation distance $r_{max}$, we need to integrate over the product of $g(r)$ and $h(r)$: $q(r_{max})=\int_{0}^{r_{max}} g(d) h(d) dd$. This gives the volume of pie dough cut at $r_{max}$, compared to the volume of the cookie cutter ($\pi r_{max}^2$).
```{r}
q <- sapply(d[d > 0], function(z)
integrate(f, lower=0, upper=z, tau=tau, rmax=z)$value)
plot(d, c(1, q), type="l", col=4, ylim=c(0,1),
xlab=expression(r[max]), ylab=expression(q(r[max])),
main="Average prob. of detection")
```
For the Half-Normal detection function, the analytical solution for the average probability is $\pi \tau^2 [1-exp(-d^2/\tau^2)] / (\pi r_{max}^2)$, where the denominator is a normalizing constant representing the volume of a cylinder of perfect detectability.
To visualize this, here is the pie analogy for $\tau=2$ and $r_{max}=2$:
```{r}
tau <- 2
rmax <- 2
w <- 0.1
m <- 2
plot(0, type="n", xlim=m*c(-rmax, rmax), ylim=c(-w, 1+w),
axes=FALSE, ann=FALSE)
yh <- g(rmax, tau=tau)
lines(seq(-rmax, rmax, rmax/100),
g(abs(seq(-rmax, rmax, rmax/100)), tau=tau))
draw_ellipse(0, yh, rmax, w, lty=2)
lines(-c(rmax, rmax), c(0, yh))
lines(c(rmax, rmax), c(0, yh))
draw_ellipse(0, 0, rmax, w)
draw_ellipse(0, 1, rmax, w, border=4)
lines(-c(rmax, rmax), c(yh, 1), col=4)
lines(c(rmax, rmax), c(yh, 1), col=4)
```
## Binned distances
The cumulative density function for the Half-Normal distribution ($\pi(r) = 1-e^{-(r/\tau)^2}$) is used to calculate cell probabilities for binned distance data (the normalizing constant is the area of the integral $\pi \tau^2$, instead of $\pi r_{max}^2$). It captures the proportion of the observed distances relative to the whole volume of the observed distance density. In the pie analogy, this is the dough volume inside the cookie cutter, compared to the dough volume inside and outside of the cutter (that happens to be $\pi \tau^2$ for the Half-Normal):
```{r}
plot(0, type="n", xlim=m*c(-rmax, rmax), ylim=c(-w, 1+w),
axes=FALSE, ann=FALSE)
yh <- g(rmax, tau=tau)
lines(seq(-m*rmax, m*rmax, rmax/(m*100)),
g(seq(-m*rmax, m*rmax, rmax/(m*100)), tau=tau),
col=2)
lines(seq(-rmax, rmax, rmax/100),
g(abs(seq(-rmax, rmax, rmax/100)), tau=tau))
draw_ellipse(0, yh, rmax, w, lty=2)
lines(-c(rmax, rmax), c(0, yh))
lines(c(rmax, rmax), c(0, yh))
draw_ellipse(0, 0, rmax, w)
```
In case of the Half-Normal distance function, $\tau$ is the _effective detection radius_ (EDR). The effective detection radius is the distance from observer where the number of individuals missed within EDR (volume of 'air' in the cookie cutter above the dough) equals the number of individuals detected outside of EDR (dough volume outside the cookie cutter), EDR is the radius $r_e$ where $q(r_e)=\pi(r_e)$:
```{r}
plot(0, type="n", xlim=m*c(-rmax, rmax), ylim=c(-w, 1+w),
axes=FALSE, ann=FALSE)
yh <- g(rmax, tau=tau)
lines(seq(-m*rmax, m*rmax, rmax/(m*100)),
g(seq(-m*rmax, m*rmax, rmax/(m*100)), tau=tau),
col=2)
lines(seq(-rmax, rmax, rmax/100),
g(abs(seq(-rmax, rmax, rmax/100)), tau=tau))
draw_ellipse(0, yh, rmax, w, lty=2)
lines(-c(rmax, rmax), c(0, yh))
lines(c(rmax, rmax), c(0, yh))
draw_ellipse(0, 0, rmax, w)
draw_ellipse(0, 1, rmax, w, border=4)
lines(-c(rmax, rmax), c(yh, 1), col=4)
lines(c(rmax, rmax), c(yh, 1), col=4)
```
## Exercise
What would be a computational algorithm to calculate EDR for any distance function and truncation distance?
Try to explain how the code below is working.
Why are EDRs different for different truncation distances?
```{r}
find_edr <- function(dist_fun, ..., rmax=Inf) {
## integral function
f <- function(d, ...)
dist_fun(d, ...) * 2*d*pi
## volume under dist_fun
V <- integrate(f, lower=0, upper=rmax, ...)$value
u <- function(edr)
V - edr^2*pi
uniroot(u, c(0, 1000))$root
}
find_edr(g, tau=1)
find_edr(g, tau=10)
find_edr(g, tau=1, b=1)
find_edr(g, tau=1, b=4, hazard=TRUE)
find_edr(g, tau=1, rmax=1)
```
```{r}
vtau <- seq(0.001, 5, 0.1)
vrmax <- seq(0.001, 2, 0.025)
vals <- expand.grid(tau=vtau, rmax=vrmax)
edr <- apply(vals, 1, function(z) find_edr(g, tau=z[1], rmax=z[2]))
edr <- matrix(edr, length(vtau), length(vrmax))
image(vtau, vrmax, edr, col=hcl.colors(100, "Lajolla"))
contour(vtau, vrmax, edr, add=TRUE, lwd=0.5)
```
The function $\pi(r)$ increases monotonically from 0 to 1:
```{r}
curve(1-exp(-(x/tau)^2), xlim=c(0, 5), ylim=c(0,1), col=4,
ylab=expression(pi(d)), xlab=expression(d),
main="Cumulative density")
```
Here are binned distances for the bSims data, with expected proportions based on $\pi()$ cell probabilities (differences within the distance bins). The nice thing about this cumulative density formulation is that it applies equally to truncated and unlimited (not truncated) distance data, and the radius end point for a bin (stored in `br`) can be infinite:
```{r}
br <- c(1, 2, 3, 4, 5, Inf)
dat$bin <- cut(da, c(0, br), include.lowest = TRUE)
(counts <- with(dat, table(bin, detected)))
pi_br <- 1-exp(-(br/tau)^2)
barplot(counts[,"1"]/sum(counts[,"1"]), space=0, col=NA,
xlab="Distance bins (100 m)", ylab="Proportions",
ylim=c(0, max(diff(c(0, pi_br)))))
lines(seq_len(length(br))-0.5, diff(c(0, pi_br)), col=3)
```
We can use the `bsims_transcribe` function for the same effect, and estimate $\hat{\tau}$ based on the binned data:
```{r}
(tr <- bsims_transcribe(o, rint=br))
tr$removal
Y <- matrix(drop(tr$removal), nrow=1)
D <- matrix(br, nrow=1)
tauhat <- exp(cmulti.fit(Y, D, type="dis")$coef)
c(true=tau, estimate=tauhat)
```
Here are cumulative counts and the true and expected cumulative cell probabilities:
```{r}
plot(stepfun(1:6, c(0, cumsum(counts[,"1"])/sum(counts[,"1"]))),
do.points=FALSE, main="Binned CDF",
ylab="Cumulative probability",
xlab="Bin radius end point (100 m)")
curve(1-exp(-(x/tau)^2), col=2, add=TRUE)
curve(1-exp(-(x/tauhat)^2), col=4, add=TRUE)
legend("topleft", bty="n", lty=1, col=c(2, 4, 1),
legend=c("True", "Estimated", "Empirical"))
```
## Availability bias
We have ignored availability so far when working with bSims, but can't continue like that for real data. What this means, is that $g(0) < 1$, so detecting an individual 0 distance from the observer depends on an event (visual or auditory) that would trigger the detection. For example, if a perfectly camouflaged birds sits in silence, detection might be difficult. Movement, or a vocalization can, however, reveal the individual and its location.
The `phi` and `tau` values are at the high end of plausible values for songbirds. The `Den`sity value is exaggerated, but this way we will have enough counts to prove our points using bSims:
```{r}
phi <- 0.5
tau <- 2
Den <- 10
```
Now we go through the layers of our bSims world:
1. initiating the landscape,
2. populating the landscape by individuals,
3. breath life into the virtual birds and let them sing,
4. put in an observer and let the observation process begin.
```{r}
set.seed(4321)
l <- bsims_init()
a <- bsims_populate(l, density=Den)
b <- bsims_animate(a, vocal_rate=phi)
o <- bsims_detect(b, tau=tau)
```
Transcription is the process of turning the detections into a table showing new individuals detected by time intervals and distance bands, as defined by the `tint` and `rint` arguments, respectively (ignore any errors in transcription for now).
```{r}
tint <- c(1, 2, 3, 4, 5)
rint <- c(0.5, 1, 1.5, 2) # truncated at 200 m
(tr <- bsims_transcribe(o, tint=tint, rint=rint))
(rem <- tr$removal) # binned new individuals
colSums(rem)
rowSums(rem)
```
The plot method displays the detections presented as part of the `tr` object.
```{r fig.width=8,fig.height=8}
plot(tr)
```
The detection process and the transcription (following a prescribed protocol) is inseparable in the field. However, recordings made in the field can be processed by a number of different ways. Separating these processed gives the ability to make these comparisons on the exact same set of detections.
Similarly to the `get_events()` function, we can visualize the accumulation of detections with time or with distance using the `get_detections()` function
```{r}
tr_dets <- get_detections(tr)
plot(tr_dets, type="time", ylim=c(0, nrow(tr_dets)))
curve((1-exp(-x*phi))*nrow(tr_dets), col=2, add=TRUE)
plot(tr_dets, type="distance", ylim=c(0, nrow(tr_dets)))
curve((1-exp(-(x/tau)^2))*nrow(tr_dets), col=2, add=TRUE)
```
## Estimating density with truncation
We now fit the removal model to the data pooled by time intervals. `p` is the cumulative probability of availability for the total duration:
```{r}
fitp <- cmulti.fit(matrix(colSums(rem), 1), matrix(tint, 1), type="rem")
phihat <- exp(fitp$coef)
c(true=phi, estimate=exp(fitp$coef))
(p <- 1-exp(-max(tint)*phihat))
```
The distance sampling model uses the distance binned counts, and a Half-Normal detection function, `q` is the cumulative probability of perceptibility within the area of truncation distance `rmax`:
```{r}
fitq <- cmulti.fit(matrix(rowSums(rem), 1), matrix(rint, 1), type="dis")
tauhat <- exp(fitq$coef)
c(true=tau, estimate=tauhat)
rmax <- max(rint)
(q <- (tauhat^2/rmax^2) * (1-exp(-(rmax/tauhat)^2)))
```
The known `A`rea, `p`, and `q` together make up the correction factor, which is used to estimate density based on $\hat{D}=Y/(A \hat{p}\hat{q})$:
```{r}
(A <- pi * rmax^2)
Dhat <- sum(rem) / (A * p * q)
c(true=Den, estimate=Dhat)
```
## Unlimited distance
We now change the distance bins to include the area outside of the previous `rmax` distance, making the counts to be unlimited distance counts:
```{r}
rint <- c(0.5, 1, 1.5, 2, Inf) # unlimited
(tr <- bsims_transcribe(o, tint=tint, rint=rint))
(rem <- tr$removal) # binned new individuals
colSums(rem)
rowSums(rem)
```
The removal model is basically the same, the only difference is that the counts can be higher due to detecting over larger area and thus potentially detecting more individuals:
```{r}
fitp <- cmulti.fit(matrix(colSums(rem), 1), matrix(tint, 1), type="rem")
phihat <- exp(fitp$coef)
c(true=phi, estimate=phihat)
(p <- 1-exp(-max(tint)*phihat))
```
The distance sampling model also takes the extended data set
```{r}
fitq <- cmulti.fit(matrix(rowSums(rem), 1), matrix(rint, 1), type="dis")
tauhat <- exp(fitq$coef)
c(true=tau, estimate=tauhat)
```
The problem is that our truncation distance is infinite, thus the area that we are sampling is also infinite. This does not make too much sense, and not at all helpful in estimating density (anything divided by infinity is 0).
We can use an arbitrarily large but finite distance (400 or 500 m). But let's think before taking a shortcut lika that.
We can use EDR (`tauhat` for Half-Normal) and calculate the estimated effective area sampled (`Ahat`; $\hat{A}=\pi \hat{\tau}^2$). We can also set `q` to be 1, because the logic behind EDR is that its volume equals the volume of the integral, in other words, it is an area that would give on average same count under perfect detection. Thus, we can estimate density using $\hat{D}=Y/(\hat{A} \hat{p}1)$
```{r}
(Ahat <- pi * tauhat^2)
q <- 1
Dhat <- sum(rem) / (Ahat * p * q)
c(true=Den, estimate=Dhat)
```
## Replicating landscapes
Remember, that we have used a single location so far. We set the density unreasonably high to have enough counts for a reasonable estimate. We can independently replicate the simulation for multiple landscapes and analyze the results to give justice to bSims under idealized conditions:
```{r eval=FALSE}
phi <- 0.5
tau <- 1
Den <- 1
tint <- c(3, 5, 10)
rint <- c(0.5, 1, 1.5, Inf)
b <- bsims_all(
density=Den,
vocal_rate=phi,
tau=tau,
tint=tint,
rint=rint)
B <- 200
set.seed(123)
sim <- b$replicate(B, cl=2)
res <- lapply(sim, get_table)
Ddur <- matrix(tint, B, length(tint), byrow=TRUE)
Ydur1 <- t(sapply(res, function(z) colSums(z)))
Ydur2 <- t(sapply(res, function(z) colSums(z[-nrow(z),])))
colSums(Ydur1) / sum(Ydur1)
colSums(Ydur2) / sum(Ydur2)
fitp1 <- cmulti(Ydur1 | Ddur ~ 1, type="rem")
fitp2 <- cmulti(Ydur2 | Ddur ~ 1, type="rem")
phihat1 <- unname(exp(coef(fitp1)))
phihat2 <- unname(exp(coef(fitp2)))
Ddis1 <- matrix(rint, B, length(rint), byrow=TRUE)
Ddis2 <- matrix(rint[-length(rint)], B, length(rint)-1, byrow=TRUE)
Ydis1 <- t(sapply(res, function(z) rowSums(z)))
Ydis2 <- t(sapply(res, function(z) rowSums(z)[-length(rint)]))
colSums(Ydis1) / sum(Ydis1)
colSums(Ydis2) / sum(Ydis2)
fitq1 <- cmulti(Ydis1 | Ddis1 ~ 1, type="dis")
fitq2 <- cmulti(Ydis2 | Ddis2 ~ 1, type="dis")
tauhat1 <- unname(exp(fitq1$coef))
tauhat2 <- unname(exp(fitq2$coef))
## unlimited correction
Apq1 <- pi * tauhat1^2 * (1-exp(-max(tint)*phihat1)) * 1
rmax <- max(rint[is.finite(rint)])
## truncated correction
Apq2 <- pi * rmax^2 *
(1-exp(-max(tint)*phihat2)) *
(tauhat2^2/rmax^2) * (1-exp(-(rmax/tauhat2)^2))
round(rbind(
phi=c(true=phi, unlimited=phihat1, truncated=phihat2),
tau=c(true=tau, unlimited=tauhat1, truncated=tauhat2),
D=c(Den, unlimited=mean(rowSums(Ydis1))/Apq1,
truncated=mean(rowSums(Ydis2))/Apq2)), 4)
## true unlimited truncated
## phi 0.5 0.5455 0.5366
## tau 1.0 0.9930 1.0087
## D 1.0 0.9823 0.9637
```
## Exercise
If time permits, try different settings and time/distance intervals.
## JOSM data
Quickly organize the JOSM data:
```{r}
## predictors
x <- josm$surveys
x$FOR <- x$Decid + x$Conif+ x$ConifWet # forest
x$AHF <- x$Agr + x$UrbInd + x$Roads # 'alienating' human footprint
x$WET <- x$OpenWet + x$ConifWet + x$Water # wet + water
cn <- c("Open", "Water", "Agr", "UrbInd", "SoftLin", "Roads", "Decid",
"OpenWet", "Conif", "ConifWet")
x$HAB <- droplevels(find_max(x[,cn])$index) # drop empty levels
levels(x$HAB)[levels(x$HAB) %in%
c("OpenWet", "Water", "Open", "Agr", "UrbInd", "Roads")] <- "Open"
levels(x$HAB)[levels(x$HAB) %in%
c("Conif", "ConifWet")] <- "Conif"
x$OBS <- as.factor(x$ObserverID)
## time intervals
yall_dur <- Xtab(~ SiteID + Dur + SpeciesID,
josm$counts[josm$counts$DetectType1 != "V",])
yall_dur <- yall_dur[sapply(yall_dur, function(z) sum(rowSums(z) > 0)) > 100]
## distance intervals
yall_dis <- Xtab(~ SiteID + Dis + SpeciesID,
josm$counts[josm$counts$DetectType1 != "V",])
yall_dis <- yall_dis[sapply(yall_dis, function(z) sum(rowSums(z) > 0)) > 100]
```
Pick our most abundant species again, and organize the data:
```{r}
spp <- "TEWA"
Ydur <- as.matrix(yall_dur[[spp]])
Ddur <- matrix(c(3, 5, 10), nrow(Ydur), 3, byrow=TRUE,
dimnames=dimnames(Ydur))
stopifnot(all(rownames(x) == rownames(Ydur)))
Ydis <- as.matrix(yall_dis[[spp]])
Ddis <- matrix(c(0.5, 1, Inf), nrow(Ydis), 3, byrow=TRUE,
dimnames=dimnames(Ydis))
stopifnot(all(rownames(x) == rownames(Ydis)))
colSums(Ydur)
colSums(Ydis)
```
We pick a removal models with `DAY` as covariate, and calculate $p(t)$:
```{r}
Mdur <- cmulti(Ydur | Ddur ~ DAY, x, type="rem")
summary(Mdur)
phi <- drop(exp(model.matrix(Mdur) %*% coef(Mdur)))
summary(phi)
p <- 1-exp(-10*phi)
summary(p)
```
We fit the intercept only distance sampling model next:
```{r}
Mdis0 <- cmulti(Ydis | Ddis ~ 1, x, type="dis")
summary(Mdis0)
```
Let's try a few covariates:
- continuous `FOR`est cover covariate: sound attenuation increases with forest cover;
- discrete `HAB`itat has 3 levels: open, deciduous forest, and coniferous forest (based on dominant land cover), because broad leaves and needles affect sound attenuation;
- finally, we use observer ID as categorical variable: observers might have different hearing abilities, training/experiance levels, good times, bad times, etc.
```{r}
Mdis1 <- cmulti(Ydis | Ddis ~ FOR, x, type="dis")
Mdis2 <- cmulti(Ydis | Ddis ~ HAB, x, type="dis")
```
We can look at AIC to find the best supported model:
```{r}
aic <- AIC(Mdis0, Mdis1, Mdis2)
aic$delta_AIC <- aic$AIC - min(aic$AIC)
aic[order(aic$AIC),]
Mdis <- get(rownames(aic)[aic$delta_AIC == 0])
summary(Mdis)
```
After finding the best model, we predict `tau`:
```{r}
tau <- drop(exp(model.matrix(Mdis) %*% coef(Mdis)))
boxplot(tau ~ HAB, x)
```
Finally, we calculate the correction factor for unlimited distances, and predict mean density:
```{r}
Apq <- pi * tau^2 * p * 1
x$ytot <- rowSums(Ydur)
mean(x$ytot / Apq)
```
Alternatively, we can use the log of the correction as an offset in log-linear models. This offset is called the QPAD offset:
```{r}
off <- log(Apq)
m <- glm(ytot ~ 1, data=x, offset=off, family=poisson)
exp(coef(m))
```
## Exercise
Try distance sampling and density estimation for another species.
Fit multiple GLMs with QPAD offsets and covariates affecting density,
interpret the results and the visualize responses.
Use `OBS` as predictor for `tau` and look at predicted EDRs. What is the practical issue with using observer as predictor?
Use `bSims::run_app("bsimsH")` to study the effects of the following factors on EDR ($\hat{\tau}$):
- spatial pattern of nest locations
- movement of individuals
- distance function misspecifications
- over/under counting
- distance measurement error
We need to talk about conditioning (1st event vs. 1st detection).
Use `bSims::run_app("bsimsHER")` to see how habitat related numeric and behavior and detection differences can bias estimates.
Next: Review QPAD, adding ARUs, looking into roadside data, etc.
## Bonus
Estimate $tau$ from distance sampling using species traits
```{r}
library(lhreg)
set.seed(1)
yall_dis <- Xtab(~ SiteID + Dis + SpeciesID,
josm$counts[josm$counts$DetectType1 != "V",])
## common species (with life history data)
SPP <- intersect(names(yall_dis), lhreg_data$spp)
SPP <- sample(SPP)[1:20]
n <- 200
i <- sample(nrow(yall_dis[[1]]), n)
yall_dis <- lapply(yall_dis[SPP], function(z) as.matrix(z[i,]))
yall_dis <- yall_dis[sapply(yall_dis, sum)>0]
SPP <- names(yall_dis)
## number of rows
Ystack <- do.call(rbind, yall_dis)
Dstack <- matrix(c(0.5, 1, Inf), nrow(Ystack), 3, byrow=TRUE)
Xstack <- droplevels(lhreg_data[match(rep(SPP, each=n), lhreg_data$spp),])
dim(Ystack)
## Constant
Mmulti1 <- cmulti(Ystack | Dstack ~ spp - 1, Xstack, type="dis")
summary(Mmulti1)
Mmulti2 <- cmulti(Ystack | Dstack ~ logmass + MaxFreqkHz + Mig2 + Hab2,
Xstack, type="dis")
summary(Mmulti2)
AIC(Mmulti1, Mmulti2)
tau1 <- exp(coef(Mmulti1))
names(tau1) <- gsub("log.tau_spp", "", names(tau1))
X <- model.matrix(~ logmass + MaxFreqkHz + Mig2 + Hab2,
lhreg_data[match(names(tau1), lhreg_data$spp),])
tau2 <- exp(X %*% coef(Mmulti2))
res <- data.frame(count=sapply(yall_dis[names(tau1)], sum), tau1=tau1, tau2=tau2)
res$diff <- res$tau1 - res$tau2
res
plot(diff ~ count, res)
abline(h=0, lty=2)
```
Think about how you'd do leave-one-out cross-validation.
Think about how you would include `HAB` effects on $\tau$ (hint: main effect and interactions).