forked from melMass/comfy_mtb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
1145 lines (907 loc) · 32.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import contextlib
import functools
import importlib
import math
import operator
import os
import shlex
import shutil
import socket
import subprocess
import sys
import uuid
from collections.abc import Callable, Sequence
from enum import Enum
from functools import reduce
from pathlib import Path
from typing import TypeVar
import folder_paths
import numpy as np
import numpy.typing as npt
import requests
import torch
from PIL import Image
from .install import pip_map
try:
from .log import log
except ImportError:
try:
from log import log
log.warn("Imported log without relative path")
except ImportError:
import logging
log = logging.getLogger("comfy mtb utils")
log.warn("[comfy mtb] You probably called the file outside a module.")
# region SANITY_CHECK Utilities
def make_report():
pass
# endregion
# region NFOV
class numpy_NFOV:
def __init__(self, fov=None, height: int = 400, width: int = 800):
self.field_of_view = fov or [0.45, 0.45]
self.PI = np.pi
self.PI_2 = np.pi * 0.5
self.PI2 = np.pi * 2.0
self.height = height
self.width = width
self.screen_points = self._get_screen_img()
def _get_coord_rad(self, is_center_point, center_point=None):
if is_center_point:
center_point = np.array(center_point)
return (center_point * 2 - 1) * np.array([self.PI, self.PI_2])
else:
return (
(self.screen_points * 2 - 1)
* np.array([self.PI, self.PI_2])
* (np.ones(self.screen_points.shape) * self.field_of_view)
)
def _get_screen_img(self):
xx, yy = np.meshgrid(
np.linspace(0, 1, self.width), np.linspace(0, 1, self.height)
)
return np.array([xx.ravel(), yy.ravel()]).T
def _calc_spherical_to_gnomonic(self, converted_screen_coord):
x = converted_screen_coord.T[0]
y = converted_screen_coord.T[1]
rou = np.sqrt(x**2 + y**2)
c = np.arctan(rou)
sin_c = np.sin(c)
cos_c = np.cos(c)
lat = np.arcsin(
cos_c * np.sin(self.cp[1]) + (y * sin_c * np.cos(self.cp[1])) / rou
)
lon = self.cp[0] + np.arctan2(
x * sin_c,
rou * np.cos(self.cp[1]) * cos_c - y * np.sin(self.cp[1]) * sin_c,
)
lat = (lat / self.PI_2 + 1.0) * 0.5
lon = (lon / self.PI + 1.0) * 0.5
return np.array([lon, lat]).T
def _bilinear_interpolation(self, screen_coord):
uf = np.mod(screen_coord.T[0], 1) * self.frame_width # long - width
vf = np.mod(screen_coord.T[1], 1) * self.frame_height # lat - height
x0 = np.floor(uf).astype(int) # coord of pixel to bottom left
y0 = np.floor(vf).astype(int)
x2 = np.add(
x0, np.ones(uf.shape).astype(int)
) # coords of pixel to top right
y2 = np.add(y0, np.ones(vf.shape).astype(int))
base_y0 = np.multiply(y0, self.frame_width)
base_y2 = np.multiply(y2, self.frame_width)
A_idx = np.add(base_y0, x0)
B_idx = np.add(base_y2, x0)
C_idx = np.add(base_y0, x2)
D_idx = np.add(base_y2, x2)
flat_img = np.reshape(self.frame, [-1, self.frame_channel])
A = np.take(flat_img, A_idx, axis=0)
B = np.take(flat_img, B_idx, axis=0)
C = np.take(flat_img, C_idx, axis=0)
D = np.take(flat_img, D_idx, axis=0)
wa = np.multiply(x2 - uf, y2 - vf)
wb = np.multiply(x2 - uf, vf - y0)
wc = np.multiply(uf - x0, y2 - vf)
wd = np.multiply(uf - x0, vf - y0)
# interpolate
AA = np.multiply(A, np.array([wa, wa, wa]).T)
BB = np.multiply(B, np.array([wb, wb, wb]).T)
CC = np.multiply(C, np.array([wc, wc, wc]).T)
DD = np.multiply(D, np.array([wd, wd, wd]).T)
nfov = np.reshape(
np.round(AA + BB + CC + DD).astype(np.uint8),
[self.height, self.width, 3],
)
return nfov
def to_nfov(self, frame, center_point):
self.frame = frame
self.frame_height = frame.shape[0]
self.frame_width = frame.shape[1]
self.frame_channel = frame.shape[2]
self.cp = self._get_coord_rad(
center_point=center_point, is_center_point=True
)
converted_screen_coord = self._get_coord_rad(is_center_point=False)
return self._bilinear_interpolation(
self._calc_spherical_to_gnomonic(converted_screen_coord)
)
# endregion
# region SERVER Utilities
class IPChecker:
def __init__(self):
self.ips = list(self.get_local_ips())
log.debug(f"Found {len(self.ips)} local ips")
self.checked_ips: set[str] = set()
def get_working_ip(self, test_url_template: str):
for ip in self.ips:
if ip not in self.checked_ips:
self.checked_ips.add(ip)
test_url = test_url_template.format(ip)
if self._test_url(test_url):
return ip
return None
@staticmethod
def get_local_ips(prefix: str = "192.168."):
hostname = socket.gethostname()
log.debug(f"Getting local ips for {hostname}")
for info in socket.getaddrinfo(hostname, None):
# Filter out IPv6 addresses if you only want IPv4
log.debug(info)
# if info[1] == socket.SOCK_STREAM and
if info[0] == socket.AF_INET and info[4][0].startswith(prefix):
yield info[4][0]
def _test_url(self, url: str):
try:
response = requests.get(url, timeout=10)
return response.status_code == 200
except Exception:
return False
@functools.lru_cache(maxsize=1)
def get_server_info():
from comfy.cli_args import args
ip_checker = IPChecker()
base_url: str = args.listen
if base_url == "0.0.0.0":
log.debug("Server set to 0.0.0.0, we will try to resolve the host IP")
base_url = ip_checker.get_working_ip(
f"http://{{}}:{args.port}/history"
)
log.debug(f"Setting ip to {base_url}")
return (base_url, args.port)
# endregion
# region MISC Utilities
def glob_multiple(
path: Path, patterns: list[str], recursive: bool = False
) -> list[Path]:
"""Combine multiple glob patterns into a single iterator."""
return list(reduce(operator.or_, (set(path.glob(p)) for p in patterns)))
def build_glob_patterns(
extensions: list[str], recursive: bool = False
) -> list[str]:
"""Build glob patterns for given extensions."""
prefix = "**/" if recursive else ""
return [f"{prefix}*.{ext}" for ext in extensions]
class SortMode(Enum):
NONE = "none"
MODIFIED = "modified"
MODIFIED_REVERSE = "modified-reverse"
NAME = "name"
NAME_REVERSE = "name-reverse"
@classmethod
def from_str(cls, value: str | None) -> "SortMode|None":
if not value:
return None
try:
return cls(value.lower())
except ValueError:
log.warning(f"Sort mode {value} not supported")
return None
# TODO: use mtb.core directly instead of copying parts here
T = TypeVar("T", bound="StringConvertibleEnum")
class StringConvertibleEnum(Enum):
"""Base class for enums with utility methods for string conversion and member listing."""
@classmethod
def from_str(cls: type[T], label: str | T) -> T:
"""
Convert a string to the corresponding enum value (case sensitive).
Args:
label (Union[str, T]): The string or enum value to convert.
Returns
-------
T: The corresponding enum value.
Raises
------
ValueError: If the label does not correspond to any enum member.
"""
if isinstance(label, cls):
return label
if isinstance(label, str):
# from key
if label in cls.__members__:
return cls[label]
for member in cls:
if member.value == label:
return member
raise ValueError(
f"Unknown label: '{label}'. Valid members: {list(cls.__members__.keys())}, "
f"valid values: {cls.list_members()}"
)
@classmethod
def to_str(cls: type[T], enum_value: T) -> str:
"""
Convert an enum value to its string representation.
Args:
enum_value (T): The enum value to convert.
Returns
-------
str: The string representation of the enum value.
Raises
------
ValueError: If the enum value is invalid.
"""
if isinstance(enum_value, cls):
return enum_value.value
raise ValueError(f"Invalid Enum: {enum_value}")
@classmethod
def list_members(cls: type[T]) -> list[str]:
"""
Return a list of string representations of all enum members.
Returns
-------
List[str]: List of all enum member values.
"""
return [enum.value for enum in cls]
def __str__(self) -> str:
"""
Returns the string representation of the enum value.
Returns
-------
str: The string representation of the enum value.
"""
return self.value
class Precision(StringConvertibleEnum):
FULL = "full"
FP32 = "fp32"
FP16 = "fp16"
BF16 = "bf16"
FP8 = "fp8"
def to_dtype(self):
match self:
case Precision.FP32 | Precision.FULL:
return torch.float32
case Precision.FP16:
return torch.float16
case Precision.BF16:
return torch.bfloat16
case Precision.FP8:
return torch.float8_e4m3fn
class Operation(StringConvertibleEnum):
COPY = "copy"
CONVERT = "convert"
DELETE = "delete"
def backup_file(
fp: Path,
target: Path | None = None,
backup_dir: str = ".bak",
suffix: str | None = None,
prefix: str | None = None,
):
if not fp.exists():
raise FileNotFoundError(f"No file found at {fp}")
backup_directory = target or fp.parent / backup_dir
backup_directory.mkdir(parents=True, exist_ok=True)
stem = fp.stem
if suffix or prefix:
new_stem = f"{prefix or ''}{stem}{suffix or ''}"
else:
new_stem = f"{stem}_{uuid.uuid4()}"
backup_file_path = backup_directory / f"{new_stem}{fp.suffix}"
# Perform the backup
shutil.copy(fp, backup_file_path)
log.debug(f"File backed up to {backup_file_path}")
def hex_to_rgb(hex_color):
try:
hex_color = hex_color.lstrip("#")
return tuple(int(hex_color[i : i + 2], 16) for i in (0, 2, 4))
except ValueError:
log.error(f"Invalid hex color: {hex_color}")
return (0, 0, 0)
def add_path(path, prepend=False):
if isinstance(path, list):
for p in path:
add_path(p, prepend)
return
if isinstance(path, Path):
path = path.resolve().as_posix()
if path not in sys.path:
if prepend:
sys.path.insert(0, path)
else:
sys.path.append(path)
def run_command(cmd, ignored_lines_start=None):
if ignored_lines_start is None:
ignored_lines_start = []
if isinstance(cmd, str):
shell_cmd = cmd
elif isinstance(cmd, list):
shell_cmd = " ".join(
arg.as_posix() if isinstance(arg, Path) else shlex.quote(str(arg))
for arg in cmd
)
else:
raise ValueError(
"Invalid 'cmd' argument. It must be a string or a list of arguments."
)
try:
_run_command(shell_cmd, ignored_lines_start)
except subprocess.CalledProcessError as e:
print(
f"Command failed with return code: {e.returncode}", file=sys.stderr
)
print(e.stderr.strip(), file=sys.stderr)
except KeyboardInterrupt:
print("Command execution interrupted.")
def _run_command(shell_cmd, ignored_lines_start):
log.debug(f"Running {shell_cmd}")
result = subprocess.run(
shell_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
shell=True,
check=True,
)
stdout_lines = result.stdout.strip().split("\n")
stderr_lines = result.stderr.strip().split("\n")
# Print stdout, skipping ignored lines
for line in stdout_lines:
if not any(line.startswith(ign) for ign in ignored_lines_start):
print(line)
# Print stderr
for line in stderr_lines:
print(line, file=sys.stderr)
print("Command executed successfully!")
def import_install(package_name):
package_spec = reqs_map.get(package_name, package_name)
try:
importlib.import_module(package_name)
except Exception: # (ImportError, ModuleNotFoundError):
run_command(
[
Path(sys.executable).as_posix(),
"-m",
"pip",
"install",
package_spec,
]
)
importlib.import_module(package_name)
# endregion
# region GLOBAL VARIABLES
# - detect mode
comfy_mode = None
if os.environ.get("COLAB_GPU"):
comfy_mode = "colab"
elif "python_embeded" in sys.executable:
comfy_mode = "embeded"
elif ".venv" in sys.executable:
comfy_mode = "venv"
# - Get the absolute path of the parent directory of the current script
here = Path(__file__).parent.absolute()
# - Construct the absolute path to the ComfyUI directory
comfy_dir = Path(folder_paths.base_path)
models_dir = Path(folder_paths.models_dir)
# NOTE: these aren't reliable, better call the getters each time
output_dir = Path(folder_paths.output_directory)
input_dir = Path(folder_paths.input_directory)
styles_dir = comfy_dir / "styles"
session_id = str(uuid.uuid4())
# - Construct the path to the font file
font_path = here / "data" / "font.ttf"
# - Add extern folder to path
extern_root = here / "extern"
add_path(extern_root)
for pth in extern_root.iterdir():
if pth.is_dir():
add_path(pth)
# - Add the ComfyUI directory and custom nodes path to the sys.path list
add_path(comfy_dir)
add_path(comfy_dir / "custom_nodes")
# TODO: use the requirements library
reqs_map = {value: key for key, value in pip_map.items()}
# NOTE: store already logged warnings to only alert once.
warned_messages: set[str] = set()
PIL_FILTER_MAP = {
"nearest": Image.Resampling.NEAREST,
"box": Image.Resampling.BOX,
"bilinear": Image.Resampling.BILINEAR,
"hamming": Image.Resampling.HAMMING,
"bicubic": Image.Resampling.BICUBIC,
"lanczos": Image.Resampling.LANCZOS,
}
# endregion
# region TENSOR Utilities
def to_numpy(image: torch.Tensor) -> npt.NDArray[np.uint8]:
"""Converts a tensor to a ndarray with proper scaling and type conversion."""
log.debug(f"Converting tensor to numpy array with shape {image.shape}")
np_array = np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8)
log.debug(f"Numpy array shape after conversion: {np_array.shape}")
return np_array
def handle_batch(
tensor: torch.Tensor,
func: Callable[[torch.Tensor], Image.Image | npt.NDArray[np.uint8]],
) -> list[Image.Image] | list[npt.NDArray[np.uint8]]:
"""Handles batch processing for a given tensor and conversion function."""
return [func(tensor[i]) for i in range(tensor.shape[0])]
def tensor2pil(tensor: torch.Tensor) -> list[Image.Image]:
"""Converts a batch of tensors to a list of PIL Images."""
def single_tensor2pil(t: torch.Tensor) -> Image.Image:
np_array = to_numpy(t)
if np_array.ndim == 2: # (H, W) for masks
return Image.fromarray(np_array, mode="L")
elif np_array.ndim == 3: # (H, W, C) for RGB/RGBA
if np_array.shape[2] == 3:
return Image.fromarray(np_array, mode="RGB")
elif np_array.shape[2] == 4:
return Image.fromarray(np_array, mode="RGBA")
raise ValueError(f"Invalid tensor shape: {t.shape}")
return handle_batch(tensor, single_tensor2pil)
def pil2tensor(images: Image.Image | list[Image.Image]) -> torch.Tensor:
"""Converts a PIL Image or a list of PIL Images to a tensor."""
def single_pil2tensor(image: Image.Image) -> torch.Tensor:
np_image = np.array(image).astype(np.float32) / 255.0
if np_image.ndim == 2: # Grayscale
return torch.from_numpy(np_image).unsqueeze(0) # (1, H, W)
else: # RGB or RGBA
return torch.from_numpy(np_image).unsqueeze(0) # (1, H, W, C)
if isinstance(images, Image.Image):
return single_pil2tensor(images)
else:
return torch.cat([single_pil2tensor(img) for img in images], dim=0)
def np2tensor(
np_array: npt.NDArray[np.float32] | Sequence[npt.NDArray[np.float32]],
) -> torch.Tensor:
"""Converts a NumPy array or a list of NumPy arrays to a tensor."""
def single_np2tensor(array: npt.NDArray[np.float32]) -> torch.Tensor:
if array.ndim == 2: # (H, W) for masks
return torch.from_numpy(
array.astype(np.float32) / 255.0
).unsqueeze(0) # (1, H, W)
elif array.ndim == 3: # (H, W, C) for RGB/RGBA
return torch.from_numpy(
array.astype(np.float32) / 255.0
).unsqueeze(0) # (1, H, W, C)
raise ValueError(f"Invalid array shape: {array.shape}")
if isinstance(np_array, np.ndarray):
return single_np2tensor(np_array)
else:
return torch.cat([single_np2tensor(arr) for arr in np_array], dim=0)
def tensor2np(tensor: torch.Tensor) -> list[npt.NDArray[np.uint8]]:
"""Converts a batch of tensors to a list of NumPy arrays."""
def single_tensor2np(t: torch.Tensor) -> npt.NDArray[np.uint8]:
t = t.squeeze() # Remove any singleton dimensions
if t.ndim == 2: # (H, W) for masks
return to_numpy(t)
elif t.ndim == 3: # (C, H, W) for RGB/RGBA
if t.shape[0] in [1, 3, 4]: # Channel-first format
t = t.permute(1, 2, 0)
return to_numpy(t)
else:
raise ValueError(f"Invalid tensor shape: {t.shape}")
return handle_batch(tensor, single_tensor2np)
def nextAvailable(path: Path | str) -> Path:
"""
Find the next available path by adding a numbered suffix. (mimics comfy's version).
Args:
path (Path): The original path to check
Returns
-------
Path: A path that doesn't exist yet
"""
path = Path(path)
if not path.is_absolute():
path = output_dir / path
if not path.exists():
return path
stem = path.stem
suffix = path.suffix
parent = path.parent
counter = 1
while True:
new_path = parent / f"{stem}_{counter:04d}{suffix}"
if not new_path.exists():
return new_path
counter += 1
def pad(img, left, right, top, bottom):
pad_width = np.array(((0, 0), (top, bottom), (left, right)))
print(
f"pad_width: {pad_width}, shape: {pad_width.shape}"
) # Debugging line
return np.pad(img, pad_width, mode="wrap")
def tiles_infer(tiles, ort_session, progress_callback=None):
"""Infer each tile with the given model. progress_callback will be called with
arguments : current tile idx and total tiles amount (used to show progress on
cursor in Blender).
"""
out_channels = 3 # normal map RGB channels
tiles_nb = tiles.shape[0]
pred_tiles = np.empty(
(tiles_nb, out_channels, tiles.shape[2], tiles.shape[3])
)
for i in range(tiles_nb):
if progress_callback != None:
progress_callback(i + 1, tiles_nb)
pred_tiles[i] = ort_session.run(
None, {"input": tiles[i : i + 1].astype(np.float32)}
)[0]
return pred_tiles
def generate_mask(tile_size, stride_size):
"""Generates a pyramidal-like mask. Used for mixing overlapping predicted tiles."""
tile_h, tile_w = tile_size
stride_h, stride_w = stride_size
ramp_h = tile_h - stride_h
ramp_w = tile_w - stride_w
mask = np.ones((tile_h, tile_w))
# ramps in width direction
mask[ramp_h:-ramp_h, :ramp_w] = np.linspace(0, 1, num=ramp_w)
mask[ramp_h:-ramp_h, -ramp_w:] = np.linspace(1, 0, num=ramp_w)
# ramps in height direction
mask[:ramp_h, ramp_w:-ramp_w] = np.transpose(
np.linspace(0, 1, num=ramp_h)[None], (1, 0)
)
mask[-ramp_h:, ramp_w:-ramp_w] = np.transpose(
np.linspace(1, 0, num=ramp_h)[None], (1, 0)
)
# Assume tiles are squared
assert ramp_h == ramp_w
# top left corner
corner = np.rot90(corner_mask(ramp_h), 2)
mask[:ramp_h, :ramp_w] = corner
# top right corner
corner = np.flip(corner, 1)
mask[:ramp_h, -ramp_w:] = corner
# bottom right corner
corner = np.flip(corner, 0)
mask[-ramp_h:, -ramp_w:] = corner
# bottom right corner
corner = np.flip(corner, 1)
mask[-ramp_h:, :ramp_w] = corner
return mask
def corner_mask(side_length):
"""Generates the corner part of the pyramidal-like mask.
Currently, only for square shapes.
"""
corner = np.zeros([side_length, side_length])
for h in range(0, side_length):
for w in range(0, side_length):
if h >= w:
sh = h / (side_length - 1)
corner[h, w] = 1 - sh
if h <= w:
sw = w / (side_length - 1)
corner[h, w] = 1 - sw
return corner - 0.25 * scaling_mask(side_length)
def scaling_mask(side_length):
scaling = np.zeros([side_length, side_length])
for h in range(0, side_length):
for w in range(0, side_length):
sh = h / (side_length - 1)
sw = w / (side_length - 1)
if h >= w and h <= side_length - w:
scaling[h, w] = sw
if h <= w and h <= side_length - w:
scaling[h, w] = sh
if h >= w and h >= side_length - w:
scaling[h, w] = 1 - sh
if h <= w and h >= side_length - w:
scaling[h, w] = 1 - sw
return 2 * scaling
def tiles_merge(tiles, stride_size, img_size, paddings):
"""Merges the list of tiles into one image. img_size is the original size, before
padding.
"""
_, tile_h, tile_w = tiles[0].shape
pad_left, pad_right, pad_top, pad_bottom = paddings
height = img_size[1] + pad_top + pad_bottom
width = img_size[2] + pad_left + pad_right
stride_h, stride_w = stride_size
# stride must be even
assert (stride_h % 2 == 0) and (stride_w % 2 == 0)
# stride must be greater or equal than half tile
assert (stride_h >= tile_h / 2) and (stride_w >= tile_w / 2)
# stride must be smaller or equal tile size
assert (stride_h <= tile_h) and (stride_w <= tile_w)
merged = np.zeros((img_size[0], height, width))
mask = generate_mask((tile_h, tile_w), stride_size)
h_range = ((height - tile_h) // stride_h) + 1
w_range = ((width - tile_w) // stride_w) + 1
idx = 0
for h in range(0, h_range):
for w in range(0, w_range):
h_from, h_to = h * stride_h, h * stride_h + tile_h
w_from, w_to = w * stride_w, w * stride_w + tile_w
merged[:, h_from:h_to, w_from:w_to] += tiles[idx] * mask
idx += 1
return merged[:, pad_top:-pad_bottom, pad_left:-pad_right]
def tiles_split(img, tile_size, stride_size):
"""Returns list of tiles from the given image and the padding used to fit the tiles
in it. Input image must have dimension C,H,W.
"""
log.debug(f"Splitting img: tile {tile_size}, stride {stride_size} ")
tile_h, tile_w = tile_size
stride_h, stride_w = stride_size
img_h, img_w = img.shape[0], img.shape[1]
# stride must be even
assert (stride_h % 2 == 0) and (stride_w % 2 == 0)
# stride must be greater or equal than half tile
assert (stride_h >= tile_h / 2) and (stride_w >= tile_w / 2)
# stride must be smaller or equal tile size
assert (stride_h <= tile_h) and (stride_w <= tile_w)
# find total height & width padding sizes
pad_h, pad_w = 0, 0
remainer_h = (img_h - tile_h) % stride_h
remainer_w = (img_w - tile_w) % stride_w
if remainer_h != 0:
pad_h = stride_h - remainer_h
if remainer_w != 0:
pad_w = stride_w - remainer_w
# if tile bigger than image, pad image to tile size
if tile_h > img_h:
pad_h = tile_h - img_h
if tile_w > img_w:
pad_w = tile_w - img_w
# pad image, add extra stride to padding to avoid pyramid
# weighting leaking onto the valid part of the picture
pad_left = pad_w // 2 + stride_w
pad_right = pad_left if pad_w % 2 == 0 else pad_left + 1
pad_top = pad_h // 2 + stride_h
pad_bottom = pad_top if pad_h % 2 == 0 else pad_top + 1
img = pad(img, pad_left, pad_right, pad_top, pad_bottom)
img_h, img_w = img.shape[1], img.shape[2]
# extract tiles
h_range = ((img_h - tile_h) // stride_h) + 1
w_range = ((img_w - tile_w) // stride_w) + 1
tiles = np.empty([h_range * w_range, img.shape[0], tile_h, tile_w])
idx = 0
for h in range(0, h_range):
for w in range(0, w_range):
h_from, h_to = h * stride_h, h * stride_h + tile_h
w_from, w_to = w * stride_w, w * stride_w + tile_w
tiles[idx] = img[:, h_from:h_to, w_from:w_to]
idx += 1
return tiles, (pad_left, pad_right, pad_top, pad_bottom)
# endregion
# region MODEL Utilities
def download_antelopev2():
antelopev2_url = (
"https://drive.google.com/uc?id=18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8"
)
try:
import gdown
log.debug("Loading antelopev2 model")
dest = get_model_path("insightface")
archive = dest / "antelopev2.zip"
final_path = dest / "models" / "antelopev2"
if not final_path.exists():
log.info(f"antelopev2 not found, downloading to {dest}")
gdown.download(
antelopev2_url,
archive.as_posix(),
resume=True,
)
log.info(f"Unzipping antelopev2 to {final_path}")
if archive.exists():
# we unzip it
import zipfile
with zipfile.ZipFile(archive.as_posix(), "r") as zip_ref:
zip_ref.extractall(final_path.parent.as_posix())
except Exception as e:
log.error(
f"Could not load or download antelopev2 model, download it manually from {antelopev2_url}"
)
raise e
def get_model_path(fam, model=None):
log.debug(f"Requesting {fam} with model {model}")
res = None
if model:
res = folder_paths.get_full_path(fam, model)
else:
# this one can raise errors...
with contextlib.suppress(KeyError):
res = folder_paths.get_folder_paths(fam)
if res:
if isinstance(res, list):
if len(res) > 1:
warn_msg = f"Found multiple match, we will pick the last {res[-1]}\n{res}"
if warn_msg not in warned_messages:
log.info(warn_msg)
warned_messages.add(warn_msg)
res = res[-1]
res = Path(res)
log.debug(f"Resolved model path from folder_paths: {res}")
else:
res = models_dir / fam
if model:
res /= model
return res
# endregion
# region UV Utilities
def create_uv_map_tensor(width=512, height=512):
u = torch.linspace(0.0, 1.0, steps=width)
v = torch.linspace(0.0, 1.0, steps=height)
U, V = torch.meshgrid(u, v)
uv_map = torch.zeros(height, width, 3, dtype=torch.float32)
uv_map[:, :, 0] = U.t()
uv_map[:, :, 1] = V.t()
return uv_map.unsqueeze(0)
# endregion
# region ANIMATION Utilities
EASINGS = [
"Linear",
"Sine In",
"Sine Out",
"Sine In/Out",
"Quart In",
"Quart Out",
"Quart In/Out",
"Cubic In",
"Cubic Out",
"Cubic In/Out",
"Circ In",
"Circ Out",
"Circ In/Out",
"Back In",
"Back Out",
"Back In/Out",
"Elastic In",
"Elastic Out",
"Elastic In/Out",
"Bounce In",
"Bounce Out",
"Bounce In/Out",
]
def apply_easing(value, easing_type):
if easing_type == "Linear":
return value
# Back easing functions
def easeInBack(t):
s = 1.70158
return t * t * ((s + 1) * t - s)
def easeOutBack(t):
s = 1.70158
return ((t - 1) * t * ((s + 1) * t + s)) + 1
def easeInOutBack(t):
s = 1.70158 * 1.525
if t < 0.5:
return (t * t * (t * (s + 1) - s)) * 2
return ((t - 2) * t * ((s + 1) * t + s) + 2) * 2
# Elastic easing functions
def easeInElastic(t):
if t == 0:
return 0
if t == 1:
return 1
p = 0.3
s = p / 4