-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfindNearest.py
79 lines (57 loc) · 2.07 KB
/
findNearest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python
# coding: utf-8
'''
Created on 27 December 2018
@author: petrileskinen, [email protected]
'''
import argparse
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
import matplotlib.image as mpimg
import pandas as pd
from scipy.spatial import KDTree
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--imagename',
default='001.png',
help='image to be located')
parser.add_argument('--csvfile',
default='vectors.csv',
help='Name of the csv file')
parser.add_argument('--imagefolder',
default='../../original/Suomi/Kunta/',
help='folder containing the images')
parser.add_argument('--dpi',
default=300, type=int,
help='Resolution of the output image')
parser.add_argument('--outimage',
default=None,
help='image to be written')
args = parser.parse_args()
C = pd.read_csv(args.csvfile, sep="\t")
filenames = list(C.values[:,1])
imgname = args.imagename
if not imgname in filenames:
print("Image not found in csv")
return
imgindex = filenames.index(imgname)
X = C.values[:,3:]
tree = KDTree(X)
_,res = tree.query(X[imgindex], k=6)
paths = [args.imagefolder + filenames[x] for x in res]
print([filenames[x] for x in res])
if args.outimage is not None:
drawTable(paths, args)
def drawTable(paths, args):
fig, axarr = plt.subplots(1, len(paths))
for i,path in enumerate(paths):
axarr[i].set_axis_off()
img = mpimg.imread(path)
axarr[i].imshow(img)
plt.tight_layout()
plt.subplots_adjust(wspace=0, hspace=0)
fig.savefig(args.outimage, dpi=args.dpi, bbox_inches='tight')
print("{} saved.".format(args.outimage))
if __name__ == "__main__":
main()