-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathtrain.py
240 lines (185 loc) · 7.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import math
import argparse
import pprint
import tqdm
import numpy as np
import torch
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from datasets import get_dataloader
from transforms import get_transform
from models import get_model
from losses import get_loss
from optimizers import get_optimizer
from schedulers import get_scheduler
import utils
import utils.config
import utils.checkpoint
import utils.metrics
def inference(model, images):
logits = model(images)
if isinstance(logits, tuple):
logits, aux_logits = logits
else:
aux_logits = None
probabilities = F.sigmoid(logits)
return logits, aux_logits, probabilities
def evaluate_single_epoch(config, model, dataloader, criterion,
epoch, writer, postfix_dict):
model.eval()
with torch.no_grad():
batch_size = config.eval.batch_size
total_size = len(dataloader.dataset)
total_step = math.ceil(total_size / batch_size)
probability_list = []
label_list = []
loss_list = []
tbar = tqdm.tqdm(enumerate(dataloader), total=total_step)
for i, data in tbar:
images = data['image'].cuda()
labels = data['label'].cuda()
logits, aux_logits, probabilities = inference(model, images)
loss = criterion(logits, labels.float())
if aux_logits is not None:
aux_loss = criterion(aux_logits, labels.float())
loss = loss + 0.4 * aux_loss
loss_list.append(loss.item())
probability_list.extend(probabilities.cpu().numpy())
label_list.extend(labels.cpu().numpy())
f_epoch = epoch + i / total_step
desc = '{:5s}'.format('val')
desc += ', {:06d}/{:06d}, {:.2f} epoch'.format(i, total_step, f_epoch)
tbar.set_description(desc)
tbar.set_postfix(**postfix_dict)
log_dict = {}
labels = np.array(label_list)
probabilities = np.array(probability_list)
predictions = (probabilities > 0.5).astype(int)
accuracy = np.sum((predictions == labels).astype(float)) / float(predictions.size)
log_dict['acc'] = accuracy
log_dict['f1'] = utils.metrics.f1_score(labels, predictions)
log_dict['loss'] = sum(loss_list) / len(loss_list)
if writer is not None:
for l in range(28):
f1 = utils.metrics.f1_score(labels[:,l], predictions[:,l], 'binary')
writer.add_scalar('val/f1_{:02d}'.format(l), f1, epoch)
for key, value in log_dict.items():
if writer is not None:
writer.add_scalar('val/{}'.format(key), value, epoch)
postfix_dict['val/{}'.format(key)] = value
return f1
def train_single_epoch(config, model, dataloader, criterion, optimizer,
epoch, writer, postfix_dict):
model.train()
batch_size = config.train.batch_size
total_size = len(dataloader.dataset)
total_step = math.ceil(total_size / batch_size)
log_dict = {}
tbar = tqdm.tqdm(enumerate(dataloader), total=total_step)
for i, data in tbar:
images = data['image'].cuda()
labels = data['label'].cuda()
logits, aux_logits, probabilities = inference(model, images)
loss = criterion(logits, labels.float())
if aux_logits is not None:
aux_loss = criterion(aux_logits, labels.float())
loss = loss + 0.4 * aux_loss
log_dict['loss'] = loss.item()
predictions = (probabilities > 0.5).long()
accuracy = (predictions == labels).sum().float() / float(predictions.numel())
log_dict['acc'] = accuracy.item()
loss.backward()
if config.train.num_grad_acc is None:
optimizer.step()
optimizer.zero_grad()
elif (i+1) % config.train.num_grad_acc == 0:
optimizer.step()
optimizer.zero_grad()
f_epoch = epoch + i / total_step
log_dict['lr'] = optimizer.param_groups[0]['lr']
for key, value in log_dict.items():
postfix_dict['train/{}'.format(key)] = value
desc = '{:5s}'.format('train')
desc += ', {:06d}/{:06d}, {:.2f} epoch'.format(i, total_step, f_epoch)
tbar.set_description(desc)
tbar.set_postfix(**postfix_dict)
if i % 100 == 0:
log_step = int(f_epoch * 10000)
if writer is not None:
for key, value in log_dict.items():
writer.add_scalar('train/{}'.format(key), value, log_step)
def train(config, model, dataloaders, criterion, optimizer, scheduler, writer, start_epoch):
num_epochs = config.train.num_epochs
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
model = model.cuda()
postfix_dict = {'train/lr': 0.0,
'train/acc': 0.0,
'train/loss': 0.0,
'val/f1': 0.0,
'val/acc': 0.0,
'val/loss': 0.0}
f1_list = []
best_f1 = 0.0
best_f1_mavg = 0.0
for epoch in range(start_epoch, num_epochs):
# train phase
train_single_epoch(config, model, dataloaders['train'],
criterion, optimizer, epoch, writer, postfix_dict)
# val phase
f1 = evaluate_single_epoch(config, model, dataloaders['val'],
criterion, epoch, writer, postfix_dict)
if config.scheduler.name == 'reduce_lr_on_plateau':
scheduler.step(f1)
elif config.scheduler.name != 'reduce_lr_on_plateau':
scheduler.step()
utils.checkpoint.save_checkpoint(config, model, optimizer, epoch, 0)
f1_list.append(f1)
f1_list = f1_list[-10:]
f1_mavg = sum(f1_list) / len(f1_list)
if f1 > best_f1:
best_f1 = f1
if f1_mavg > best_f1_mavg:
best_f1_mavg = f1_mavg
return {'f1': best_f1, 'f1_mavg': best_f1_mavg}
def run(config):
train_dir = config.train.dir
model = get_model(config).cuda()
criterion = get_loss(config)
optimizer = get_optimizer(config, model.parameters())
checkpoint = utils.checkpoint.get_initial_checkpoint(config)
if checkpoint is not None:
last_epoch, step = utils.checkpoint.load_checkpoint(model, optimizer, checkpoint)
else:
last_epoch, step = -1, -1
print('from checkpoint: {} last epoch:{}'.format(checkpoint, last_epoch))
scheduler = get_scheduler(config, optimizer, last_epoch)
dataloaders = {split:get_dataloader(config, split, get_transform(config, split))
for split in ['train', 'val']}
writer = SummaryWriter(config.train.dir)
train(config, model, dataloaders, criterion, optimizer, scheduler,
writer, last_epoch+1)
def parse_args():
parser = argparse.ArgumentParser(description='HPA')
parser.add_argument('--config', dest='config_file',
help='configuration filename',
default=None, type=str)
return parser.parse_args()
def main():
import warnings
warnings.filterwarnings("ignore")
print('train HPA Image Classification Challenge.')
args = parse_args()
if args.config_file is None:
raise Exception('no configuration file')
config = utils.config.load(args.config_file)
pprint.PrettyPrinter(indent=2).pprint(config)
utils.prepare_train_directories(config)
run(config)
print('success!')
if __name__ == '__main__':
main()