-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlistSpanningTrees.c
463 lines (349 loc) · 14.6 KB
/
listSpanningTrees.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#include <stdlib.h>
#include <limits.h>
#include "searchTree.h"
#include "cs_Tree.h"
#include "listComponents.h"
#include "listSpanningTrees.h"
/** Implements Read&Tarjans listing algorithm for spanning
trees of a graph.
Two variants are given. A listing algorithm that returns a
list of all spanning trees, and a version that counts all spanning
trees. The second method works, if the number of spanning trees is
too large to be materialized at once in main memory. However,
the runtime of the algorithm still is O(n * nSpanningTrees).
There is a parameter for stopping the computation, if the number
of trees already found superceeds a threshold. */
void __visit(struct Vertex* v, int component, int* components) {
struct VertexList* e;
if (components[v->number] != -1) {
return;
}
components[v->number] = component;
for (e=v->neighborhood; e!=NULL; e=e->next) {
__visit(e->endPoint, component, components);
}
}
struct ShallowGraph* __selectB(struct Graph* partialTree, struct ShallowGraph* rest, int* components, int n, struct ShallowGraphPool* sgp) {
struct ShallowGraph* B = getShallowGraph(sgp);
struct VertexList* e;
for (int v=0; v<n; ++v) {
components[v] = -1;
}
/* mark connected components */
for (int v=0; v<n; ++v) {
__visit(partialTree->vertices[v], v, components);
}
for (e=rest->edges; e!=NULL; e=e->next) {
int v = e->startPoint->number;
int w = e->endPoint->number;
if ((components[v] != -1) && (components[w] != -1) && (components[v] == components[w])) {
e->flag = 1;
}
}
B->next = getShallowGraph(sgp);
for (e=rest->edges; e!=NULL; e=rest->edges) {
if (e->flag == 1) {
pushEdge(B, popEdge(rest));
} else {
pushEdge(B->next, popEdge(rest));
}
}
return B;
}
/**
Split list into two new lists. the returned list r contains all edges in list that have a corresponding edge in graph. r->next contains all
edges that are not contained in graph. list is consumed and dumped. Any access to the list lateron will result in strange things happening.
*/
struct ShallowGraph* __getGraphAndNonGraphEdges(struct Graph* graph, struct ShallowGraph* list, struct ShallowGraphPool* sgp) {
struct VertexList* e;
struct ShallowGraph* graphEdges = getShallowGraph(sgp);
struct ShallowGraph* nonGraphEdges = getShallowGraph(sgp);
/* mark edges that are in graph */
for (e=list->edges; e!=NULL; e=e->next) {
e->flag = isNeighbor(graph, e->startPoint->number, e->endPoint->number);
}
/* consume list putting differently flagged edges in different lists */
for (e=list->edges; e!=NULL; e=list->edges) {
if (e->flag == 1) {
pushEdge(graphEdges, popEdge(list));
} else {
pushEdge(nonGraphEdges, popEdge(list));
}
}
dumpShallowGraph(sgp, list);
graphEdges->next = nonGraphEdges;
nonGraphEdges->prev = graphEdges;
return graphEdges;
}
struct ShallowGraph* __getNonTreeBridges(struct Graph* graph, struct Graph* partialTree, struct ShallowGraphPool* sgp) {
struct ShallowGraph* tmp = getShallowGraph(sgp);
struct ShallowGraph* biconnectedComponents = listBiconnectedComponents(graph, sgp);
struct ShallowGraph* idx;
struct ShallowGraph* nonTreeBridges;
/* find bridges in graph */
for (idx=biconnectedComponents; idx; idx=idx->next) {
if (idx->m == 1) {
pushEdge(tmp, popEdge(idx));
}
}
dumpShallowGraphCycle(sgp, biconnectedComponents);
tmp = __getGraphAndNonGraphEdges(partialTree, tmp, sgp);
nonTreeBridges = tmp->next;
tmp->next = NULL;
dumpShallowGraph(sgp, tmp);
return nonTreeBridges;
}
struct ShallowGraph* __rec(int d, struct Graph* graph, struct Graph* partialTree, int* components, int n, struct ShallowGraphPool* sgp, struct GraphPool* gp) {
struct VertexList* e;
struct ShallowGraph* result1;
struct ShallowGraph* result2;
struct ShallowGraph* B;
struct ShallowGraph* bridges;
struct ShallowGraph* graphEdges = __getGraphAndNonGraphEdges(partialTree, getGraphEdges(graph, sgp), sgp);
struct ShallowGraph* rest = graphEdges->next;
if (rest->m == 0) {
struct ShallowGraph* tree = getGraphEdges(partialTree, sgp);
tree->next = tree->prev = tree;
/* garbage collection */
dumpShallowGraphCycle(sgp, graphEdges);
return tree;
}
/* get edge that will be included and excluded in this __recursive step */
e = popEdge(rest);
/* add e to partialTree (already contained in graph) to find spanning trees containing e */
addEdgeBetweenVertices(e->startPoint->number, e->endPoint->number, e->label, partialTree, gp);
/* S1 */
/* let B be the set of all edges (in graph) joining edges already connected in partialTree */
B = __selectB(partialTree, rest, components, n, sgp);
/* ensures, that adding an edge of graph to partialTree results in a tree in the __recursive call */
deleteEdges(graph, B, gp);
result1 = __rec(d+1, graph, partialTree, components, n, sgp, gp);
/* add edges to graph again */
addEdges(graph, B, gp);
/* preliminary garbage collection */
dumpShallowGraphCycle(sgp, B);
/* delete e from partialTree and graph to find spanning trees not containing e */
deleteEdgeBetweenVertices(graph, e, gp);
deleteEdgeBetweenVertices(partialTree, e, gp);
/* S2 */
bridges = __getNonTreeBridges(graph, partialTree, sgp);
addEdges(partialTree, bridges, gp);
result2 = __rec(d+1, graph, partialTree, components, n, sgp, gp);
deleteEdges(partialTree, bridges, gp);
/* At the end, spanningTree and graph need to be same as in the beginning. */
addEdgeBetweenVertices(e->startPoint->number, e->endPoint->number, e->label, graph, gp);
/* garbage collection */
dumpVertexList(sgp->listPool, e);
dumpShallowGraphCycle(sgp, bridges);
dumpShallowGraphCycle(sgp, graphEdges);
return addComponent(result1, result2);
}
struct ShallowGraph* listSpanningTrees(struct Graph* original, struct ShallowGraphPool* sgp, struct GraphPool* gp) {
struct Graph* graph = cloneGraph(original, gp);
struct Graph* partialTree = emptyGraph(original, gp);
struct ShallowGraph* result = NULL;
int* components = malloc(sizeof(int) * original->n);
struct ShallowGraph* idx;
/* add all bridges to partialTree */
struct ShallowGraph* biconnectedComponents = listBiconnectedComponents(original, sgp);
for (idx=biconnectedComponents; idx; idx=idx->next) {
struct VertexList* e = idx->edges;
if (idx->m == 1) {
addEdgeBetweenVertices(e->startPoint->number, e->endPoint->number, e->label, partialTree, gp);
}
}
dumpShallowGraphCycle(sgp, biconnectedComponents);
/* do the backtrack, baby */
result = __rec(0, graph, partialTree, components, graph->n, sgp, gp);
result->prev->next = NULL;
result->prev = NULL;
/* edges in result point to vertices in partialTree this has to be changed */
rebaseShallowGraphs(result, original);
/* garbage collection */
free(components);
dumpGraph(gp, graph);
dumpGraph(gp, partialTree);
return result;
}
/** TODO: nasty! merge with above */
struct ShallowGraph* __recK(int d, int* k, struct Graph* graph, struct Graph* partialTree, int* components, int n, struct ShallowGraphPool* sgp, struct GraphPool* gp) {
struct VertexList* e;
struct ShallowGraph* result1;
struct ShallowGraph* result2;
struct ShallowGraph* B;
struct ShallowGraph* bridges;
struct ShallowGraph* graphEdges = __getGraphAndNonGraphEdges(partialTree, getGraphEdges(graph, sgp), sgp);
struct ShallowGraph* rest = graphEdges->next;
if (rest->m == 0) {
struct ShallowGraph* tree = getGraphEdges(partialTree, sgp);
tree->next = tree->prev = tree;
/* garbage collection */
dumpShallowGraphCycle(sgp, graphEdges);
/* count this spanning tree */
*k -= 1;
return tree;
}
/* get edge that will be included and excluded in this recursive step */
e = popEdge(rest);
/* add e to partialTree (already contained in graph) to find spanning trees containing e */
addEdgeBetweenVertices(e->startPoint->number, e->endPoint->number, e->label, partialTree, gp);
/* S1 */
/* let B be the set of all edges (in graph) joining edges already connected in partialTree */
B = __selectB(partialTree, rest, components, n, sgp);
/* ensures, that adding an edge of graph to partialTree results in a tree in the recursive call */
deleteEdges(graph, B, gp);
result1 = __recK(d+1, k, graph, partialTree, components, n, sgp, gp);
/* add edges to graph again */
addEdges(graph, B, gp);
/* preliminary garbage collection */
dumpShallowGraphCycle(sgp, B);
/* if we did find enough spanning trees, skip second part */
if (*k <= 0) {
return result1;
}
/* delete e from partialTree and graph to find spanning trees not containing e */
deleteEdgeBetweenVertices(graph, e, gp);
deleteEdgeBetweenVertices(partialTree, e, gp);
/* S2 */
bridges = __getNonTreeBridges(graph, partialTree, sgp);
addEdges(partialTree, bridges, gp);
result2 = __recK(d+1, k, graph, partialTree, components, n, sgp, gp);
deleteEdges(partialTree, bridges, gp);
/* At the end, spanningTree and graph need to be same as in the beginning. */
addEdgeBetweenVertices(e->startPoint->number, e->endPoint->number, e->label, graph, gp);
/* garbage collection */
dumpVertexList(sgp->listPool, e);
dumpShallowGraphCycle(sgp, bridges);
dumpShallowGraphCycle(sgp, graphEdges);
return addComponent(result1, result2);
}
/** return the first k spanning trees of original as a CYCLE OF SHALLOW GRAPHS ! */
struct ShallowGraph* listKSpanningTrees(struct Graph* original, int* k, struct ShallowGraphPool* sgp, struct GraphPool* gp) {
struct Graph* graph = cloneGraph(original, gp);
struct Graph* partialTree = emptyGraph(original, gp);
struct ShallowGraph* result = NULL;
int* components = malloc(sizeof(int) * original->n);
struct ShallowGraph* idx;
/* add all bridges to partialTree */
struct ShallowGraph* biconnectedComponents = listBiconnectedComponents(original, sgp);
for (idx=biconnectedComponents; idx; idx=idx->next) {
struct VertexList* e = idx->edges;
if (idx->m == 1) {
addEdgeBetweenVertices(e->startPoint->number, e->endPoint->number, e->label, partialTree, gp);
}
}
dumpShallowGraphCycle(sgp, biconnectedComponents);
/* do the backtrack, baby */
result = __recK(0, k, graph, partialTree, components, graph->n, sgp, gp);
// do not disconnect the cycle for easy access to last element
// result->prev->next = NULL;
// result->prev = NULL;
/* edges in result point to vertices in partialTree this has to be changed */
rebaseShallowGraphs(result, original);
/* garbage collection */
free(components);
dumpGraph(gp, graph);
dumpGraph(gp, partialTree);
return result;
}
long int __recCount(long int d, struct Graph* graph, struct Graph* partialTree, int* components, int n, struct ShallowGraphPool* sgp, struct GraphPool* gp) {
struct ShallowGraph* B;
struct ShallowGraph* graphEdges = __getGraphAndNonGraphEdges(partialTree, getGraphEdges(graph, sgp), sgp);
struct ShallowGraph* rest = graphEdges->next;
if (rest->m == 0) {
/* garbage collection */
dumpShallowGraphCycle(sgp, graphEdges);
return 1;
}
/* get edge that will be included and excluded in this __recursive step */
struct VertexList* e = popEdge(rest);
/* add e to partialTree (already contained in graph) to find spanning trees containing e */
addEdgeBetweenVertices(e->startPoint->number, e->endPoint->number, e->label, partialTree, gp);
/* S1 */
/* let B be the set of all edges (in graph) joining edges already connected in partialTree */
B = __selectB(partialTree, rest, components, n, sgp);
/* ensures, that adding an edge of graph to partialTree results in a tree in the __recursive call */
deleteEdges(graph, B, gp);
long int result1 = __recCount(d, graph, partialTree, components, n, sgp, gp);
/* add edges to graph again */
addEdges(graph, B, gp);
/* preliminary garbage collection */
dumpShallowGraphCycle(sgp, B);
/* at this point, graph and partialTree are as at the start of this call.
If there are already too many spanning Trees found (indicated by return value -1)
return at this point and prune the second __recursive call */
if ((result1 == -1) || (result1 > d)) {
/* garbage collection */
dumpVertexList(sgp->listPool, e);
dumpShallowGraphCycle(sgp, graphEdges);
return -1;
}
/* delete e from partialTree and graph to find spanning trees not containing e */
deleteEdgeBetweenVertices(graph, e, gp);
deleteEdgeBetweenVertices(partialTree, e, gp);
/* S2 */
struct ShallowGraph* bridges = __getNonTreeBridges(graph, partialTree, sgp);
addEdges(partialTree, bridges, gp);
long int result2 = __recCount(d, graph, partialTree, components, n, sgp, gp);
deleteEdges(partialTree, bridges, gp);
/* At the end, spanningTree and graph need to be same as in the beginning. */
addEdgeBetweenVertices(e->startPoint->number, e->endPoint->number, e->label, graph, gp);
/* garbage collection */
dumpVertexList(sgp->listPool, e);
dumpShallowGraphCycle(sgp, bridges);
dumpShallowGraphCycle(sgp, graphEdges);
if ((result2 == -1) || (result2 > d)) {
/* if there were too many spanning trees in the second __recursion... */
return -1;
} else {
/* avoid overflow */
if ((result1 > LONG_MAX / 2) || (result2 > LONG_MAX / 2)) {
return -1;
} else {
return result1 + result2;
}
}
}
long int countSpanningTrees(struct Graph* original, long int maxBound, struct ShallowGraphPool* sgp, struct GraphPool* gp) {
struct Graph* graph = cloneGraph(original, gp);
struct Graph* partialTree = emptyGraph(original, gp);
long int result;
int* components = malloc(sizeof(int) * original->n);
struct ShallowGraph* idx;
/* add all bridges to partialTree */
struct ShallowGraph* biconnectedComponents = listBiconnectedComponents(original, sgp);
for (idx=biconnectedComponents; idx; idx=idx->next) {
struct VertexList* e = idx->edges;
if (idx->m == 1) {
addEdgeBetweenVertices(e->startPoint->number, e->endPoint->number, e->label, partialTree, gp);
}
}
dumpShallowGraphCycle(sgp, biconnectedComponents);
/* do the backtrack, baby */
result = __recCount(maxBound, graph, partialTree, components, graph->n, sgp, gp);
/* garbage collection */
free(components);
dumpGraph(gp, graph);
dumpGraph(gp, partialTree);
return result;
}
int countNonisomorphicSpanningTrees(struct Graph* g, struct GraphPool* gp, struct ShallowGraphPool* sgp) {
int i = 0;
struct Vertex* searchTree = getVertex(gp->vertexPool);
// list the spanning trees, canonicalize them and add them in a search tree (to avoid duplicates, i.e. isomorphic spanning trees
struct ShallowGraph* sample = listSpanningTrees(g, sgp, gp);
for (struct ShallowGraph* tree=sample; tree!=NULL; tree=tree->next) {
if (tree->m != 0) {
struct Graph* tmp = shallowGraphToGraph(tree, gp);
struct ShallowGraph* cString = canonicalStringOfTree(tmp, sgp);
addToSearchTree(searchTree, cString, gp, sgp);
/* garbage collection */
dumpGraph(gp, tmp);
}
}
// this is the number of isomorphism classes
i = searchTree->d;
dumpShallowGraphCycle(sgp, sample);
dumpSearchTree(gp, searchTree);
return i;
}