diff --git a/duckreg/duckreg.py b/duckreg/duckreg.py
index 54b4dd7..158a5a1 100644
--- a/duckreg/duckreg.py
+++ b/duckreg/duckreg.py
@@ -12,6 +12,7 @@ def __init__(
seed: int,
n_bootstraps: int = 100,
fitter="numpy",
+ keep_connection_open=False,
):
self.db_name = db_name
self.table_name = table_name
@@ -20,6 +21,7 @@ def __init__(
self.conn = duckdb.connect(db_name)
self.rng = np.random.default_rng(seed)
self.fitter = fitter
+ self.keep_connection_open = keep_connection_open
@abstractmethod
def prepare_data(self):
@@ -54,6 +56,7 @@ def fit(self):
self.point_estimate = self.estimate()
if self.n_bootstraps > 0:
self.vcov = self.bootstrap()
+ self.conn.close() if not self.keep_connection_open else None
return None
elif self.fitter == "feols":
fit = self.estimate_feols()
@@ -64,6 +67,7 @@ def fit(self):
fit.get_inference()
fit._vcov_type = "NP-Bootstrap"
fit._vcov_type_detail = "NP-Bootstrap"
+ self.conn.close() if not self.keep_connection_open else None
return fit
else:
@@ -73,7 +77,12 @@ def fit(self):
)
)
- def summary(self):
+ def summary(self) -> dict:
+ """Summary of regression
+
+ Returns:
+ dict
+ """
if self.n_bootstraps > 0:
return {
"point_estimate": self.point_estimate,
@@ -81,9 +90,22 @@ def summary(self):
}
return {"point_estimate": self.point_estimate}
+ def queries(self) -> dict:
+ """Collect all query methods in the class
-def wls(X: np.ndarray, y: np.ndarray, n: np.ndarray) -> np.ndarray:
+ Returns:
+ dict: Dictionary of query methods
+ """
+ self._query_names = [x for x in dir(self) if "query" in x]
+ self.queries = {
+ k: getattr(self, self._query_names[c])
+ for c, k in enumerate(self._query_names)
+ }
+ return self.queries
+
+def wls(X: np.ndarray, y: np.ndarray, n: np.ndarray) -> np.ndarray:
+ """Weighted least squares with frequency weights"""
N = np.sqrt(n)
N = N.reshape(-1, 1) if N.ndim == 1 else N
Xn = X * N
diff --git a/duckreg/estimators.py b/duckreg/estimators.py
index 5529acc..70167ac 100644
--- a/duckreg/estimators.py
+++ b/duckreg/estimators.py
@@ -18,8 +18,10 @@ def __init__(
cluster_col: str,
seed: int,
n_bootstraps: int = 100,
+ event_study: bool = False,
rowid_col: str = "rowid",
fitter: str = "numpy",
+ **kwargs,
):
super().__init__(
db_name=db_name,
@@ -27,6 +29,7 @@ def __init__(
seed=seed,
n_bootstraps=n_bootstraps,
fitter=fitter,
+ **kwargs,
)
self.formula = formula
self.cluster_col = cluster_col
@@ -34,7 +37,6 @@ def __init__(
self._parse_formula()
def _parse_formula(self):
-
lhs, rhs = self.formula.split("~")
rhs_deparsed = rhs.split("|")
covars, fevars = rhs.split("|") if len(rhs_deparsed) > 1 else (rhs, None)
@@ -76,7 +78,6 @@ def compress_data(self):
self.df_compressed.eval(create_means, inplace=True)
def collect_data(self, data: pd.DataFrame) -> pd.DataFrame:
-
y = data.filter(
regex=f"mean_{'(' + '|'.join(self.outcome_vars) + ')'}", axis=1
).values
@@ -124,7 +125,6 @@ def fit_vcov(self):
self.vcov = n_nk * (bread @ meat @ bread)
def estimate_feols(self):
-
if self.fevars:
fml = f"{'+'.join([f'mean_{x}' for x in self.outcome_vars])} ~ {' + '.join(self.covars)} | {' + '.join(self.fevars)}"
else:
@@ -234,12 +234,14 @@ def __init__(
time_col: str = None,
n_bootstraps: int = 100,
cluster_col: str = None,
+ **kwargs,
):
super().__init__(
db_name=db_name,
table_name=table_name,
seed=seed,
n_bootstraps=n_bootstraps,
+ **kwargs,
)
self.outcome_var = outcome_var
self.covariates = covariates
@@ -299,12 +301,12 @@ def compress_data(self):
{', ' + ', '.join([f'avg_{cov}_time' for cov in self.covariates]) if self.time_col is not None else ''}
"""
self.df_compressed = self.conn.execute(self.compress_query).fetchdf()
+
self.df_compressed[f"mean_{self.outcome_var}"] = (
self.df_compressed[f"sum_{self.outcome_var}"] / self.df_compressed["count"]
)
def collect_data(self, data: pd.DataFrame):
-
rhs = (
self.covariates
+ [f"avg_{cov}_unit" for cov in self.covariates]
@@ -326,7 +328,6 @@ def collect_data(self, data: pd.DataFrame):
return y, X, n
def estimate(self):
-
y, X, n = self.collect_data(data=self.df_compressed)
return wls(X, y, n)
@@ -402,8 +403,259 @@ def bootstrap(self):
################################################################################
+class DuckMundlakEventStudy(DuckReg):
+ def __init__(
+ self,
+ db_name: str,
+ table_name: str,
+ outcome_var: str,
+ treatment_col: str,
+ unit_col: str,
+ time_col: str,
+ cluster_col: str,
+ n_bootstraps: int = 100,
+ **kwargs,
+ ):
+ super().__init__(
+ db_name=db_name,
+ table_name=table_name,
+ n_bootstraps=n_bootstraps,
+ **kwargs,
+ )
+ self.table_name = table_name
+ self.outcome_var = outcome_var
+ self.treatment_col = treatment_col
+ self.unit_col = unit_col
+ self.time_col = time_col
+ self.num_periods = None
+ self.cohorts = None
+ self.time_dummies = None
+ self.post_treatment_dummies = None
+ self.transformed_query = None
+ self.compression_query = None
+ self.cluster_col = cluster_col
+ def prepare_data(self):
+ # create_cohort_and_ever_treated_columns
+ self.cohort_query = f"""
+ ALTER TABLE {self.table_name} ADD COLUMN cohort INTEGER;
+ UPDATE {self.table_name} SET cohort = (
+ SELECT MIN({self.time_col})
+ FROM {self.table_name} AS p2
+ WHERE p2.{self.unit_col} = {self.table_name}.{self.unit_col} AND p2.{self.treatment_col} = 1
+ );
+ """
+ self.conn.execute(self.cohort_query)
+ self.ever_treated_query = f"""
+ UPDATE {self.table_name} SET cohort = NULL WHERE cohort = 2147483647; -- Set to NULL if never treated
+ ALTER TABLE {self.table_name} ADD COLUMN ever_treated INTEGER;
+ UPDATE {self.table_name} SET ever_treated = CASE WHEN cohort IS NOT NULL THEN 1 ELSE 0 END;
+ """
+ self.conn.execute(self.ever_treated_query)
+ # retrieve_num_periods_and_cohorts
+ self.num_periods = self.conn.execute(
+ f"SELECT MAX({self.time_col}) FROM {self.table_name}"
+ ).fetchone()[0]
+ cohorts = self.conn.execute(
+ f"SELECT DISTINCT cohort FROM {self.table_name} WHERE cohort IS NOT NULL"
+ ).fetchall()
+ self.cohorts = [row[0] for row in cohorts]
+ # generate_time_dummies
+ self.time_dummies = ",\n".join(
+ [
+ f"CASE WHEN {self.time_col} = {i} THEN 1 ELSE 0 END AS time_{i}"
+ for i in range(self.num_periods + 1)
+ ]
+ )
+ # generate cohort dummies
+ cohort_intercepts = []
+ for cohort in self.cohorts:
+ cohort_intercepts.append(
+ f"CASE WHEN cohort = {cohort} THEN 1 ELSE 0 END AS cohort_{cohort}"
+ )
+ self.cohort_intercepts = ",\n".join(cohort_intercepts)
+
+ # generate_treatment_dummies
+ treatment_dummies = []
+ for cohort in self.cohorts:
+ for i in range(self.num_periods + 1):
+ treatment_dummies.append(
+ f"CASE WHEN cohort = {cohort} AND {self.time_col} = {i} THEN 1 ELSE 0 END AS treatment_time_{cohort}_{i}"
+ )
+ self.treatment_dummies = ",\n".join(treatment_dummies)
+ # create_transformed_query
+ self.design_matrix_query = f"""
+ CREATE TEMP TABLE transformed_panel_data AS
+ SELECT
+ p.{self.unit_col},
+ p.{self.time_col},
+ p.{self.treatment_col},
+ p.{self.outcome_var},
+ -- Intercept (constant term)
+ 1 AS intercept,
+ -- cohort intercepts
+ {self.cohort_intercepts},
+ -- Time dummies for each period
+ {self.time_dummies},
+ -- Treated group interacted with treatment time dummies
+ {self.treatment_dummies}
+ FROM
+ {self.table_name} p;
+ """
+ self.conn.execute(self.design_matrix_query)
+
+ def compress_data(self):
+ self.rhs = f"""
+ intercept,
+ {", ".join([f"cohort_{cohort}" for cohort in self.cohorts])},
+ {", ".join([f"time_{i}" for i in range(self.num_periods + 1)])},
+ {", ".join([f"treatment_time_{cohort}_{i}" for cohort in self.cohorts for i in range(self.num_periods + 1)])};
+ """
+ self.compression_query = f"""
+ CREATE TEMP TABLE compressed_panel_data AS
+ SELECT
+ {self.rhs.replace(";", "")},
+ COUNT(*) AS count,
+ SUM({self.outcome_var}) AS sum_{self.outcome_var}
+ FROM
+ transformed_panel_data
+ GROUP BY
+ {self.rhs}
+ """
+ self.conn.execute(self.compression_query)
+ self.df_compressed = self.conn.execute(
+ "SELECT * FROM compressed_panel_data"
+ ).fetchdf()
+ self.df_compressed[f"mean_{self.outcome_var}"] = (
+ self.df_compressed[f"sum_{self.outcome_var}"] / self.df_compressed["count"]
+ )
+
+ def collect_data(self, data):
+ self._rhs_list = [x.strip().replace(";", "") for x in self.rhs.split(",")]
+ X = data[self._rhs_list].values
+ y = data[f"mean_{self.outcome_var}"].values
+ n = data["count"].values
+
+ y = y.reshape(-1, 1) if y.ndim == 1 else y
+ X = X.reshape(-1, 1) if X.ndim == 1 else X
+ return y, X, n
+
+ def estimate(self):
+ y, X, n = self.collect_data(data=self.df_compressed)
+ coef = wls(X, y, n)
+ res = pd.DataFrame(
+ {
+ "est": coef.squeeze(),
+ },
+ index=self._rhs_list,
+ )
+ cohort_names = [x.split("_")[1] for x in self._rhs_list if "cohort_" in x]
+ event_study_coefs = {}
+ for c in cohort_names:
+ offset = res.filter(regex=f"^cohort_{c}", axis=0).values
+ event_study_coefs[c] = (
+ res.filter(regex=f"treatment_time_{c}_", axis=0) + offset
+ )
+
+ return event_study_coefs
+
+ def bootstrap(self):
+ # list all clusters
+ total_clusters = self.conn.execute(
+ f"SELECT COUNT(DISTINCT {self.cluster_col}) FROM transformed_panel_data"
+ ).fetchone()[0]
+ boot_coefs = {str(cohort): [] for cohort in self.cohorts}
+ # bootstrap loop
+ for _ in tqdm(range(self.n_bootstraps)):
+ resampled_clusters = (
+ self.conn.execute(
+ f"SELECT UNNEST(ARRAY(SELECT {self.cluster_col} FROM transformed_panel_data ORDER BY RANDOM() LIMIT {total_clusters}))"
+ )
+ .fetchdf()
+ .values.flatten()
+ .tolist()
+ )
+
+ self.conn.execute(
+ f"""
+ CREATE TEMP TABLE resampled_transformed_panel_data AS
+ SELECT * FROM transformed_panel_data
+ WHERE {self.cluster_col} IN ({', '.join(map(str, resampled_clusters))})
+ """
+ )
+
+ self.conn.execute(
+ f"""
+ CREATE TEMP TABLE resampled_compressed_panel_data AS
+ SELECT
+ {self.rhs.replace(";", "")},
+ COUNT(*) AS count,
+ SUM({self.outcome_var}) AS sum_{self.outcome_var}
+ FROM
+ resampled_transformed_panel_data
+ GROUP BY
+ {self.rhs.replace(";", "")}
+ """
+ )
+
+ df_boot = self.conn.execute(
+ "SELECT * FROM resampled_compressed_panel_data"
+ ).fetchdf()
+ df_boot[f"mean_{self.outcome_var}"] = (
+ df_boot[f"sum_{self.outcome_var}"] / df_boot["count"]
+ )
+
+ y, X, n = self.collect_data(data=df_boot)
+ coef = wls(X, y, n)
+ res = pd.DataFrame(
+ {
+ "est": coef.squeeze(),
+ },
+ index=self._rhs_list,
+ )
+ cohort_names = [x.split("_")[1] for x in self._rhs_list if "cohort_" in x]
+ for c in cohort_names:
+ offset = res.filter(regex=f"^cohort_{c}", axis=0).values
+ event_study_coefs = (
+ res.filter(regex=f"treatment_time_{c}_", axis=0) + offset
+ )
+ boot_coefs[c].append(event_study_coefs.values.flatten())
+
+ self.conn.execute("DROP TABLE resampled_transformed_panel_data")
+ self.conn.execute("DROP TABLE resampled_compressed_panel_data")
+ # Calculate the covariance matrix for each cohort
+ bootstrap_cov_matrix = {
+ cohort: np.cov(np.array(coefs).T) for cohort, coefs in boot_coefs.items()
+ }
+ return bootstrap_cov_matrix
+
+ def estimate_feols(self):
+ raise NotImplementedError(
+ "feols solver not implemented for Mundlak event study estimator"
+ )
+
+ def summary(self) -> dict:
+ """Summary of event study regression (overrides the parent class method)
+
+ Returns:
+ dict of event study coefficients and their standard errors
+ """
+ if self.n_bootstraps > 0:
+ summary_tables = {}
+ for c in self.point_estimate.keys():
+ point_estimate = self.point_estimate[c]
+ se = np.sqrt(np.diag(self.vcov[c]))
+ summary_tables[c] = pd.DataFrame(
+ np.c_[point_estimate, se],
+ columns=["point_estimate", "se"],
+ index=point_estimate.index,
+ )
+ return summary_tables
+ return {"point_estimate": self.point_estimate}
+
+
+################################################################################
class DuckDoubleDemeaning(DuckReg):
def __init__(
self,
@@ -416,12 +668,14 @@ def __init__(
seed: int,
n_bootstraps: int = 100,
cluster_col: str = None,
+ **kwargs,
):
super().__init__(
db_name=db_name,
table_name=table_name,
seed=seed,
n_bootstraps=n_bootstraps,
+ **kwargs,
)
self.outcome_var = outcome_var
self.treatment_var = treatment_var
@@ -486,7 +740,6 @@ def compress_data(self):
)
def collect_data(self, data: pd.DataFrame):
-
X = data[f"ddot_{self.treatment_var}"].values
X = np.c_[np.ones(X.shape[0]), X]
y = data[f"mean_{self.outcome_var}"].values
@@ -558,4 +811,4 @@ def bootstrap(self):
return np.cov(boot_coefs.T)
-######################################################################
+################################################################################
diff --git a/notebooks/event_study.ipynb b/notebooks/event_study.ipynb
new file mode 100644
index 0000000..6166df5
--- /dev/null
+++ b/notebooks/event_study.ipynb
@@ -0,0 +1,828 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# `duckreg` for panel data: Applying Mundlak Regression to estimate Event Studies at scale"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "from duckreg.estimators import DuckMundlak, DuckMundlakEventStudy\n",
+ "import duckdb\n",
+ "import pyfixest as pf\n",
+ "\n",
+ "np.random.seed(42)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def panel_dgp(\n",
+ " num_units=1000,\n",
+ " num_periods=30,\n",
+ " num_treated=50,\n",
+ " treatment_start=15,\n",
+ " hetfx=False,\n",
+ " base_treatment_effect=np.repeat(0, 15),\n",
+ " ar_coef=0.2, # Autoregressive coefficient for epsilon_it\n",
+ " sigma_unit=1,\n",
+ " sigma_time=0.5,\n",
+ " sigma_epsilon=0.5, # Standard deviation of epsilon_it\n",
+ "):\n",
+ " unit_intercepts = np.random.normal(0, sigma_unit, num_units)\n",
+ "\n",
+ " # Generate day-of-the-week pattern\n",
+ " day_effects = np.array(\n",
+ " [-0.1, 0.1, 0, 0, 0.1, 0.5, 0.5]\n",
+ " ) # Stronger effects on weekends\n",
+ " day_pattern = np.tile(day_effects, num_periods // 7 + 1)[:num_periods]\n",
+ "\n",
+ " # Generate autoregressive structure\n",
+ " ar_coef_time = 0.2\n",
+ " ar_noise_time = np.random.normal(0, sigma_time, num_periods)\n",
+ " time_intercepts = np.zeros(num_periods)\n",
+ " time_intercepts[0] = ar_noise_time[0]\n",
+ " for t in range(1, num_periods):\n",
+ " time_intercepts[t] = ar_coef_time * time_intercepts[t - 1] + ar_noise_time[t]\n",
+ " # Combine day-of-the-week pattern and autoregressive structure\n",
+ " time_intercepts = day_pattern + time_intercepts - np.mean(time_intercepts)\n",
+ " # Generate autoregressive noise for each unit\n",
+ " ar_noise = np.random.normal(0, sigma_epsilon, (num_units, num_periods))\n",
+ " noise = np.zeros((num_units, num_periods))\n",
+ " noise[:, 0] = ar_noise[:, 0]\n",
+ " for t in range(1, num_periods):\n",
+ " noise[:, t] = ar_coef * noise[:, t - 1] + ar_noise[:, t]\n",
+ " # N X T matrix of potential outcomes under control\n",
+ " Y0 = unit_intercepts[:, np.newaxis] + time_intercepts[np.newaxis, :] + noise\n",
+ " # Generate the base treatment effect (concave structure)\n",
+ " # Generate heterogeneous multipliers for each unit\n",
+ " if hetfx:\n",
+ " heterogeneous_multipliers = np.random.uniform(0.5, 1.5, num_units)\n",
+ " else:\n",
+ " heterogeneous_multipliers = np.ones(num_units)\n",
+ "\n",
+ " # Create a 2D array to store the heterogeneous treatment effects\n",
+ " treatment_effect = np.zeros((num_units, num_periods - treatment_start))\n",
+ " for i in range(num_units):\n",
+ " treatment_effect[i, :] = heterogeneous_multipliers[i] * base_treatment_effect\n",
+ "\n",
+ " # random assignment\n",
+ " treated_units = np.random.choice(num_units, num_treated, replace=False)\n",
+ " treatment_status = np.zeros((num_units, num_periods), dtype=bool)\n",
+ " treatment_status[treated_units, treatment_start:] = True\n",
+ "\n",
+ " # Apply the heterogeneous treatment effect to the treated units\n",
+ " Y1 = Y0.copy()\n",
+ " for t in range(treatment_start, num_periods):\n",
+ " Y1[:, t][treatment_status[:, t]] += treatment_effect[:, t - treatment_start][\n",
+ " treatment_status[:, t]\n",
+ " ]\n",
+ "\n",
+ " # Create a DataFrame\n",
+ " unit_ids = np.repeat(np.arange(num_units), num_periods)\n",
+ " time_ids = np.tile(np.arange(num_periods), num_units)\n",
+ " W_it = treatment_status.flatten()\n",
+ " Y_it = np.where(W_it, Y1.flatten(), Y0.flatten())\n",
+ " df = pd.DataFrame(\n",
+ " {\n",
+ " \"unit_id\": unit_ids,\n",
+ " \"time_id\": time_ids,\n",
+ " \"W_it\": W_it.astype(int),\n",
+ " \"Y_it\": Y_it,\n",
+ " }\n",
+ " )\n",
+ " return df\n",
+ "\n",
+ "\n",
+ "# Function to create and populate DuckDB database\n",
+ "def create_duckdb_database(df, db_name=\"large_dataset.db\", table=\"panel_data\"):\n",
+ " conn = duckdb.connect(db_name)\n",
+ " conn.execute(f\"DROP TABLE IF EXISTS {table}\")\n",
+ " conn.execute(f\"CREATE TABLE {table} AS SELECT * FROM df\")\n",
+ " conn.close()\n",
+ " print(f\"Data loaded into DuckDB database: {db_name}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "num_periods = 30\n",
+ "treat_start_period = 15\n",
+ "treat_effect_vector= 0.2 * np.log(2 * np.arange(1, num_periods - treat_start_period + 1))\n",
+ "treat_effect_vector[8:] = 0 # switch off effects after a week\n",
+ "sigma_i, sigma_t = 2, 1\n",
+ "event_study_true = np.r_[np.repeat(0, num_periods-treat_start_period), treat_effect_vector]\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Data loaded into DuckDB database: event_study_data.db\n"
+ ]
+ }
+ ],
+ "source": [
+ "df = panel_dgp(\n",
+ " num_units=10_000, num_treated= 5_000,\n",
+ " num_periods=30,\n",
+ " treatment_start = treat_start_period,\n",
+ " hetfx=False,\n",
+ " base_treatment_effect = treat_effect_vector,\n",
+ " sigma_unit = sigma_i, sigma_time = sigma_t,\n",
+ ")\n",
+ "\n",
+ "db_name = 'event_study_data.db'\n",
+ "create_duckdb_database(df, db_name)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " unit_id | \n",
+ " time_id | \n",
+ " W_it | \n",
+ " Y_it | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 0.436139 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 1.016883 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " 0 | \n",
+ " 0.480516 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 0.578209 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 1.066747 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " unit_id time_id W_it Y_it\n",
+ "0 0 0 0 0.436139\n",
+ "1 0 1 0 1.016883\n",
+ "2 0 2 0 0.480516\n",
+ "3 0 3 0 0.578209\n",
+ "4 0 4 0 1.066747"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Static Specification\n",
+ "\n",
+ "### Two-way Mundlak"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "100%|██████████| 100/100 [00:01<00:00, 65.08it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "point_estimate 0.203918\n",
+ "standard_error 0.003637\n",
+ "Name: 1, dtype: float64"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mundlak = DuckMundlak(\n",
+ " db_name=\"event_study_data.db\",\n",
+ " table_name=\"panel_data\",\n",
+ " outcome_var=\"Y_it\",\n",
+ " covariates=[\"W_it\"],\n",
+ " unit_col=\"unit_id\",\n",
+ " time_col=\"time_id\",\n",
+ " cluster_col=\"unit_id\",\n",
+ " n_bootstraps=100,\n",
+ " seed = 42\n",
+ ")\n",
+ "mundlak.fit()\n",
+ "\n",
+ "mundlak_results = mundlak.summary()\n",
+ "\n",
+ "restab = pd.DataFrame(\n",
+ " np.c_[mundlak_results[\"point_estimate\"], mundlak_results[\"standard_error\"]],\n",
+ " columns=[\"point_estimate\", \"standard_error\"],\n",
+ ").iloc[1, :]\n",
+ "restab"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.21533040462966416"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "treat_effect_vector.mean()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The Two-way Mundlak specification consistently recovers the average treatment effect in the post-treatment period. Under staggered adoption, however, this guarantee is lost. More on this later. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Dynamic Specification\n",
+ "\n",
+ "### Single Treatment Cohort"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df[\"ever_treated\"] = df.groupby(\"unit_id\")[\"W_it\"].transform(\"max\")\n",
+ "m2 = pf.feols(\"\"\"\n",
+ " Y_it ~ i(time_id, ever_treated, ref = 14) |\n",
+ " unit_id + time_id\n",
+ " \"\"\",\n",
+ " df\n",
+ " )\n",
+ "evstudy_coefs = m2.coef().values\n",
+ "# insert zero in reference period\n",
+ "evstudy_coefs = np.insert(evstudy_coefs, 14, 0)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### compressed estimation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " unit_id time_id W_it Y_it\n",
+ "0 0 0 0 0.436139\n",
+ "1 0 1 0 1.016883\n",
+ "2 0 2 0 0.480516\n",
+ "3 0 3 0 0.578209\n",
+ "4 0 4 0 1.066747\n"
+ ]
+ }
+ ],
+ "source": [
+ "conn = duckdb.connect(\"event_study_data.db\")\n",
+ "print(conn.execute(\"SELECT * FROM panel_data LIMIT 5\").fetchdf())\n",
+ "conn.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "mundlak = DuckMundlakEventStudy(\n",
+ " db_name=\"event_study_data.db\",\n",
+ " table_name=\"panel_data\",\n",
+ " outcome_var=\"Y_it\",\n",
+ " treatment_col=\"W_it\",\n",
+ " unit_col=\"unit_id\",\n",
+ " time_col=\"time_id\",\n",
+ " cluster_col=\"unit_id\",\n",
+ " n_bootstraps=0, # set to nonzero to get block-bootstrapped standard errors\n",
+ " seed=42,\n",
+ ")\n",
+ "\n",
+ "mundlak.fit()\n",
+ "evsum = mundlak.summary()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAINCAYAAAAJGy/3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAADPCElEQVR4nOzdd3hUZfrG8e+ZmcykN1JogVClSy+iAi4KgiCiwtootnXVn7qICq4FbKgr1lWxgl0suBYUC9JEmiBV6QQQCS2kTJJJmTm/P04IxFAykDAp9+e6zuXJmTMzdyKQPHnf93kN0zRNRERERERE5JhsgQ4gIiIiIiJS2alwEhEREREROQEVTiIiIiIiIiegwklEREREROQEVDiJiIiIiIicgAonERERERGRE1DhJCIiIiIicgIqnERERERERE7AEegAp5vP5+PPP/8kIiICwzACHUdERERERALENE2ysrKoW7cuNtvxx5RqXOH0559/kpSUFOgYIiIiIiJSSezcuZP69esf954aVzhFREQA1hcnMjIywGlERCQgCgpg6lTrfPRoCAoKbB4REQmIzMxMkpKSimuE4zFM0zRPQ6ZKIzMzk6ioKDIyMlQ4iYjUVNnZEB5unbvdEBYW2DwiIhIQ/tQGag4hIiIiIiJyAiqcRERERERETkCFk4iIiIiIyAnUuOYQZWGaJoWFhXi93kBHEakU7HY7DodDLfxFRESkxlLh9Bf5+fns3r2bnJycQEcRqVRCQ0OpU6cOTqcz0FFERERETjsVTkfw+Xxs27YNu91O3bp1cTqd+g271HimaZKfn8++ffvYtm0bzZo1O+EGcSIiIiLVjQqnI+Tn5+Pz+UhKSiI0NDTQcUQqjZCQEIKCgti+fTv5+fkEBwcHOpLIqXG54KuvDp+LiIicgAqno9Bv00VK098LqVYcDhg4MNApRESkCtFPQiIiIiIiIiegEScREal5Cgrgvfes86uugqCgwOYREZFKTyNOIpVYTk4Ol156KZGRkRiGQXp6+lGviYif8vNh9GjryM8PdBoREakCVDhVA4ZhHPeYMGFChWdISUk5YY5p06ZVyHv37t2bO+64o0Je+2RMmDCB9u3bl+m+o32dWrRoUXzPW2+9xYIFC/j555/ZvXs3UVFRR712qirb11BERESkstFUvQq0OyOXbfuzaRQXRp2okIp7n927i8+nT5/OAw88wIYNG4qvhYeHF5+bponX68XhKN//9UlJSSVyPPXUU8yaNYsffvih+NqRP+B7vV4Mw6jxDQdat25d4msElPh/s2XLFlq2bEmbNm2Oe01EREREKlbN/qm1DEzTJCe/0O/jnUUp9Hz8R658bQk9H/+Rdxal+P0apmmWKWPt2rWLj6ioKAzDKP54/fr1RERE8M0339CpUydcLhc//fQTo0aNYsiQISVe54477qB3797FH/t8PiZNmkSjRo0ICQnhzDPP5JNPPjlqBrvdXiJHeHg4Doej+ONZs2ZRp04dvvjiC1q1aoXL5WLHjh3k5eUxduxY6tWrR1hYGN26dWPu3LnFr3vgwAGuuOIK6tWrR2hoKG3btuWDDz4ofnzUqFHMmzeP5557rnjEJiUlhblz52IYBt9++y0dOnQgJCSE8847j7179/LNN9/QsmVLIiMjufLKK0tsdnyiz/nQ686ePZvOnTsTGhrKWWedVVyoTps2jYkTJ7Jq1aoyjbQd+TU6dMTFxQHWKNDkyZOZP38+hmHQu3fvo14DTvh1BFi4cCG9e/cmNDSUmJgY+vXrx8GDB4/5NRQRERGRwzTidAK5BV5aPfDtKb2Gz4T7P1/H/Z+v8+t5vz3Uj1Bn+fwvGjduHE899RSNGzcmJiamTM+ZNGkS7777LlOmTKFZs2bMnz+fq6++mvj4eHr16uV3hpycHJ544glef/11atWqRUJCArfeeiu//fYbH374IXXr1uWzzz6jf//+rFmzhmbNmuHxeOjUqRP33HMPkZGRzJw5k2uuuYYmTZrQtWtXnnvuOTZu3EibNm146KGHAIiPjy/+wX/ChAn897//JTQ0lGHDhjFs2DBcLhfvv/8+brebSy65hBdeeIF77rnHr8/53//+N5MnTyY+Pp6bbrqJa6+9loULFzJ8+HDWrl1bYrTtZKfSzZgxg3HjxrF27VpmzJiB0+kEOOq1E30dV65cyd/+9jeuvfZannvuORwOB3PmzMHr9R7zaygiIiIih6lwqiEeeughzj///DLfn5eXx2OPPcYPP/xAjx49AGjcuDE//fQTr7zyykkVTgUFBbz00kuceeaZAOzYsYOpU6eyY8cO6tatC8DYsWOZNWsWU6dO5bHHHqNevXqMHTu2+DX+7//+j2+//ZaPPvqIrl27EhUVhdPpJDQ0lNq1a5d6z0ceeYSePXsCcN111zF+/Hi2bNlC48aNAbjsssuYM2cO99xzj1+f86OPPlr88bhx4xg4cCAej4eQkJASo20nsmbNmhJTKQGuvvpqpkyZQmxsLKGhoTidzhKv9ddrZfk6Pvnkk3Tu3JmXXnqp+HVat25dfH68r6GIiFQhGbsgbQvENoGoeoFOI1KtqHA6gZAgO7891M+v56RmeOj79Dx8R8y0sxnww5he1I4K9uu9y0vnzp39un/z5s3k5OSUKrby8/Pp0KHDSWVwOp20a9eu+OM1a9bg9Xpp3rx5ifvy8vKoVasWYK2Feuyxx/joo4/YtWsX+fn55OXlERoaWqb3PPL9EhMTCQ0NLS6aDl1bunQp4N/nfOTr1qlTB4C9e/fSoEGDMuU65IwzzuCLL74ocS0yMtKv1yjL13HlypVcfvnlfr2uiIhUMSvehi9vB9MHhg0GPQcdRwQ6lUi1ocLpBAzD8Hu6XOP4cCYNbcu9M9biNU3shsFjQ9vQOD78xE+uIGFhYSU+ttlspdZQFRQUFJ+73W4AZs6cSb16JX9j5XK5TipDSEgIhmGUeA+73c7y5cux20sWiYdGYf7zn//w3HPP8eyzz9K2bVvCwsK44447yC9j++CgI/ZmMQyjxMeHrvl8vuI8ULbP+a+vCxS/jj+cTidNmzb1+3lHKsvXMSSk4pqTiFRJLhd89NHhc5GqLmMXfHEbUPS93fTBl3dAk79p5EmknKhwqiDDuzTg3ObxpOzPITkutEK76p2M+Ph41q5dW+LaypUriwuCIxs4nMy0vLLo0KEDXq+XvXv3cs455xz1noULF3LxxRdz9dVXA1ZxsnHjRlq1alV8j9PpxOv1nnKe8vqcyytPWZXl69iuXTtmz57NxIkTj/r46c4sEnAOB2gUVqoL04TZEykumoqveyFtqwonkXKiwqkC1YkKqXQF0yHnnXce//nPf3j77bfp0aMH7777LmvXri2ekhYREcHYsWP517/+hc/n4+yzzyYjI4OFCxcSGRnJyJEjTzlD8+bNueqqqxgxYgSTJ0+mQ4cO7Nu3j9mzZ9OuXTsGDhxIs2bN+OSTT/j555+JiYnh6aefZs+ePSUKp+TkZJYsWUJKSgrh4eHExsaeVJ7y+pyTk5PZtm0bK1eupH79+kRERBxzlK6wsJDU1NQS1wzDIDExscy5y/J1HD9+PG3btuXmm2/mpptuwul0MmfOHC6//HLi4uKO+jWs6a3iRUSqhMI8+PxWWPNR6ccMO8Q2Ln1dRE6KfjKqofr168f999/P3XffTZcuXcjKymLEiJLzoB9++GHuv/9+Jk2aRMuWLenfvz8zZ86kUaNG5ZZj6tSpjBgxgjvvvJMzzjiDIUOGsGzZsuK1Qvfddx8dO3akX79+9O7dm9q1a5dqoz527FjsdjutWrUiPj6eHTt2nHSe8vicL730Uvr370+fPn2Ij48v0T79r9atW0edOnVKHA0bNvQ794m+js2bN+e7775j1apVdO3alR49evD5558X7xlVnl9DkSqhsBA+/tg6CgsDnUbk5OSkwTuXWEWTYYczrzz8mGGDQc9qtEmkHBlmWTcLqiYyMzOJiooiIyOj1CJ8j8fDtm3baNSoEcHBZW/iIFIT6O+HVCvZ2XCoo6XbDX9ZBypS6aVtg/cuhwObwBkBw96Cpn+D5ztaXfUufQPaXhbolCKV3vFqg7/SiJOIiIhIVbJzGbze1yqaIuvDdd9aRRNAmLWJOnZn4PKJVFNa4yQiIiJSVfz2Ocy4EQo9ULsdXPkRRNYpfjjVFcqOYBcNsv5AO/OJlC+NOImIiIhUdqYJP78AH420iqZm/WD0NyWKphmbZtDPu4Xr6iTSb/0UZmyaEcDAItWPCicRERGRysxbCDPvhO/uA0zocj38/X1wHd4fMjU7lYk/T+TQjoI+TCYumkhqdupRX1JE/KepeiIiIiKVVZ4bPhkNm74DDLjgEehxCxyxoTzAxoMb8VFyI3af6WNn1k5qh2nSnkh5UOEkIiIiUhll7ob3h0HqanAEw9DXoNXgUrelZqcy+ZfJpa4b2EiKSDodSUVqBBVOIiJS8zidMHXq4XORymbPOqvdeOYuCI2DKz6EpC6lbluftp5bfriFvbl78Xld2Gx5YIBhgif1EszCqACEF6metMZJRERqnqAgGDXKOoKCAp1GpKTNs+GNflbRVKsZXP/DUYumBX8sYOQ3I9mbu5dgsw45227HVWDts/fP3cHkp3chZX/O6U4vUm2pcJJyNXfuXAzDID09HYBp06YRHR3t12skJyfz7LPPlns2fxmGwf/+979AxxARkZpk+VvWSFN+FjQ8G677DmIblbrtow0f8X8//h85hTkEFzZn38YbMQtisfmswikSD3bDIDku9HR/BiLVlgqnamLUqFEYhsFNN91U6rFbbrkFwzAYNWrU6Q92Ghwq1o52pKaeuJvQhAkTaN++fanru3fv5sILL6yAxCWpQBMJgMJCmDnTOgoLA51GBHw++GEifHkbmF5oOwyumQGhsSVvM308vfxpHl78MF7Ti+HuzL5NI4gOjuS6sxtBUeHks+fz2NA21IkKCcRnI1ItaY1TNZKUlMSHH37IM888Q0iI9Q+lx+Ph/fffp0GDBgFOV/E2bNhAZGRkiWsJCQkn/Xq1a6sLkUi1lZcHF11knbvd4NC3QwmgAg/875+wrmjfpXPvhj73luqc5yn08O+f/s13278DIH9fX/L2/4029aJ4+apOJMWG8u0r4eQCDmchw7tU/+/9IqeTRpwqUsYu2Dbf+u9p0LFjR5KSkpgx4/CGdzNmzKBBgwZ06NChxL1Hmw7Xvn17JkyYUPyxYRi8/vrrXHLJJYSGhtKsWTO++OKLEs/5+uuvad68OSEhIfTp04eUlJTjZtyyZQsXX3wxiYmJhIeH06VLF3744YfjPuf1118nOjqa2bNnH/e+hIQEateuXeKw2aw/4nPnzqVr166EhYURHR1Nz5492b59O9OmTWPixImsWrWqeJRq2rRpxZ//oZGglJQUDMPgo48+4pxzziEkJIQuXbqwceNGli1bRufOnQkPD+fCCy9k3759xZmWLVvG+eefT1xcHFFRUfTq1YsVK1YUP56cnAzAJZdcgmEYxR8DfP7553Ts2JHg4GAaN27MxIkTKdRvxkVEqpecNHj7Yqtosjng4pfgvH+XKprSPGlc/931fLf9Owzs5O4aRt7+vlzaMYlPbjqLpFhrSl6Q3foFYo5ZYG2aKyLlRoXTiZgm5Gf7fyx9DZ5tA28Nsv679DX/X+Mk/sG79tprmXqoUxTw5ptvMnr06JP+9CdOnMiwYcNYvXo1AwYM4KqrriItLQ2AnTt3MnToUAYNGsTKlSu5/vrrGTdu3HFfz+12M2DAAGbPns2vv/5K//79GTRoEDt27Djq/U8++STjxo3ju+++429/+9tJfQ6FhYUMGTKEXr16sXr1ahYtWsSNN96IYRgMHz6cO++8k9atW7N79252797N8OHDj/laDz74IPfddx8rVqzA4XBw5ZVXcvfdd/Pcc8+xYMECNm/ezAMPPFB8f1ZWFiNHjuSnn35i8eLFNGvWjAEDBpCVlQVYhRXA1KlT2b17d/HHCxYsYMSIEdx+++389ttvvPLKK0ybNo1HH330pL4GIiJSCR3YAq/3hZ2LwRUJV38KHa4qdVtKRgpXf301q/atwvCFkL39WozsTjw8pA1PXd6O4CB78b2HCie3Dch3n67PRKRG0NyEEynIgcfqntprmD74eqx1+OPeP8EZ5tdTrr76asaPH8/27dsBWLhwIR9++CFz5871772LjBo1iiuuuAKAxx57jOeff56lS5fSv39/Xn75ZZo0acLkydbeEWeccQZr1qzhiSeeOObrnXnmmZx55pnFHz/88MN89tlnfPHFF9x6660l7r3nnnt45513mDdvHq1btz5h1vr165f4uGHDhqxbt47MzEwyMjK46KKLaNKkCQAtW7Ysvi88PByHw1GmqXljx46lX79+ANx+++1cccUVzJ49m549ewJw3XXXFY9YAZx33nklnv/qq68SHR3NvHnzuOiii4iPjwcgOjq6xPtPnDiRcePGMXLkSAAaN27Mww8/zN13382DDz54wpwiIlLJ7VgCH/wdctMgKgmu+hgSWpa6bfme5dw+53Yy8jKgIAb3jtHEuZJ4+caOdGoYW+p+lyMKfJBls4EnA1wRp+OzEakRVDhVM/Hx8QwcOJBp06ZhmiYDBw4kLi7upF+vXbt2xedhYWFERkayd+9eAH7//Xe6detW4v4ePXoc9/XcbjcTJkxg5syZ7N69m8LCQnJzc0uNOE2ePJns7Gx++eUXGjduXKasCxYsICLi8DeIoKIWw7GxsYwaNYp+/fpx/vnn07dvX4YNG0adOnXK9LpHOvLrkZiYCEDbtm1LXDv09QHYs2cP9913H3PnzmXv3r14vV5ycnKOOcJ2yKpVq1i4cGGJESav14vH4yEnJ4fQUHVJEhGpkjJ2wfJp8NOz4MuHuh3giukQkVjq1q+3fs19C++jwFeANzeJ3J0j6JLUkP9e1YGEiOCjvnyYMxw8kGmzgScTtI2TSLlR4XQiQaHWyI8/Mv+EF7taI02HGHa4ZQlE+jF6FXRyPxxfe+21xaM3L7744lHvsdlsmH+ZClhQUFA6wl/2NzEMA5/PV+q+sho7dizff/89Tz31FE2bNiUkJITLLruM/Pz8Evedc845zJw5k48++uiE0/8OadSo0TFbn0+dOpXbbruNWbNmMX36dO677z6+//57unfv7lf+I78eRtH8879eO/LrM3LkSA4cOMBzzz1Hw4YNcblc9OjRo9Tn+1dut5uJEycydOjQUo8FBx/9m6WIiFRyy6fBl3cARd9/E9vCqJmlZpeYpsnra17n+V+fB6AgszWeP4czqkdz/j2wJUH2Y6+0iHRGggfch0acRKTcqHA6EcPwe7occc1g0HPWP46m1yqaBj1rXT8N+vfvT35+PoZhFE8r+6v4+Hh2795d/HFmZibbtm3z631atmxZqlnE4sWLj/uchQsXMmrUKC655BLAKhCO1lCia9eu3HrrrfTv3x+Hw8HYsX5OczyKDh060KFDB8aPH0+PHj14//336d69O06nE6/Xe8qvfzQLFy7kpZdeYsCAAYC1Lmz//v0l7gkKCir1/h07dmTDhg00bdq0QnKJiMhplJsOi16E+U+WvL73N+uxI37OKPAV8MjiR5ixyWr0lH/gbIyDF/HMsDO5pEPJKelHE+Wy1jhl2WyQl1len4GIoMKp4nQcAU3+BmlbIbYxRNU7bW9tt9v5/fffi8+P5rzzzmPatGkMGjSI6OhoHnjggWPeeyw33XQTkydP5q677uL6669n+fLlJdb3HE2zZs2YMWMGgwYNwjAM7r///mOOYJ111ll8/fXXXHjhhTgcDu64447jvvbevXvxeDwlrtWqVYs//viDV199lcGDB1O3bl02bNjApk2bGDFiBGB1ttu2bRsrV66kfv36RERE4HK5yvx1ONHn+84779C5c2cyMzO56667ilvFH5KcnFy8TsrlchETE8MDDzzARRddRIMGDbjsssuw2WysWrWKtWvX8sgjj5RLNpEazemE//738LlIRdj7Oyx5BVZPt9ZM/5XptX5OKPoZISs/izvn3smi3YswTYO8PYOpbZzHK//sTKu6kaWffxTRwdaUdbfN0IiTSDlTV72KFFUPGp1zWoumQyIjI0vtaXSk8ePH06tXLy666CIGDhzIkCFDihsnlFWDBg349NNP+d///seZZ57JlClTeOyxx477nKeffpqYmBjOOussBg0aRL9+/ejYseMx7z/77LOZOXMm9913Hy+88MJxX/uMM86gTp06JY7ly5cTGhrK+vXrufTSS2nevDk33ngjt9xyC//4xz8AuPTSS+nfvz99+vQhPj6eDz74wK+vw/G88cYbHDx4kI4dO3LNNddw2223ldpbavLkyXz//fckJSUVt43v168fX331Fd999x1dunShe/fuPPPMMzRs2LDcsonUaEFBcMst1vGXKckip8Tnhd+/srrqvtQdlk+1iqZazYGSLcYx7NYvV4Hd7t2M+GaEVTT5gsj9YwRnxQ/my1vPLnPRBFArJBo4tMZJhZNIeTLMvy50qeYyMzOJiooiIyOjVGHh8XjYtm0bjRo10joSkb/Q3w8RkePISYNf34Flr0N6UQMgwwYtBkK3m6BhT+vxv07j7ziC3w78xs0/3MIBz358hRHk7hzJrWf15va+zbHbjOO9aykfr/qVh1aOINTnY0mT0XDuqU91F6nOjlcb/JWm6omISM3j9cKCBdb5OeeAn1OVRYrtWVc0He8jKMy1roXEQMeR0OU6iG5w+N6jTOOft3Med869izxfLl5PIvY91/PKsD6c36p0l72ySAiLBiDHZqMw96B+0BMpR/r7JCIiNY/HA336WOduN4T52QRIajZvIWz42iqYtv90+HpiW+j2D2h7GQSFHP25UfWKp/B/8PsHTFr6OCY+Ct1NqZv/D17759k0jg8/6WiJ4THF527PQaJP+pVE5K9UOImIiIiURfYBWPEWLHsDMv+wrhl2aDnIKpga9LC68R5HanYqKZkpzNzyDf/bUtQ5L70z59X6J09d3pEw16n9aBYbGozdZ8Nr85GlwkmkXKlwEhERETme3ath6Suw5hMoLOreGloLOo2CzteVuQnUjE0zmPDzREwOd5PN33cBY7r8kxvPbVK8P+CpiAwJwuENwmvLI92TTtIpv6KIHKLCSURERAQgYxekbYHYJhCeAOu/giWvwo6fD99T50zo+g9ocykElb1Rzm73bib8PAGTwz25TNPg6QuvZ2Dr8tuzz+WwYfO5gDwytY+TSLlS4SQiIiKy4m348nYwfYABrkjIK2rnbXNAy8FWd7ykriecjnekPG8e32z7hpdXvlqiaAIwDBO760A5fhJgGAZ2MxjIJKsgu1xfW6SmU+EkIiIiNVvGriOKJgDTKppCYqHL9dD5Wois49dLpmanMn3DdD7d+CkH8w5ar2qWrLlM08CXX6ucPonD7EYoAG5vbrm/tkhNpsJJREREara0LUcUTUe49A1oel6ZX8Y0TVbsXcF7v7/Hjzt+xGt6AQgx4kjf0xnT58CVOBPDMDFNg/zUoXSol1xOn8RhDsPqypftyyv31xapyVQ4iYhIzRMUBE8+efhcarbYJqWvGXaIP6NMT/cUevh629e8//v7bDi4ofh6p8TO5OzrztJ1dTAMOxefWZev1rXFDNqPURDHo4PPpk7UMdqWnwKHPQKAbHxQmAcOV7m/h0hNpMJJqg3DMPjss88YMmRIoKOISGXndMJddwU6hVQW+9aX/Niww6BnT9gtb7d7Nx9u+JBPN31KRtF6qGB7MAMbD2RI42E8+WUmS7ccIMhu8Mzw9lzUri73ZLQgZX8OyXGhFVI0ATgd0WBCls0ATyaEx1fI+4jUNLZAB5DyMWnSJLp06UJERAQJCQkMGTKEDRsO/9br73//O/379y/xnFmzZmEYBhMmTChxfcKECTRoYO10npKSgmEYpY6rr776uI8bhsHixYsr5HOdMGEC7du3L3V99+7dXHjhhRXynkcyDIP//e9/Ff4+IiJyGhR44Oux1nn7a2DkV3DHGug44qi3m6bJstRl/GvOv+g/oz9vrn2TjLwM6obV5c5Od/LD5T9wS9vx3PfxAX7ecoAwp51po7tyUbu6ANSJCqFHk1oVVjQBhDoiAciy2UCd9UTKjUacqol58+Zxyy230KVLFwoLC7n33nu54IIL+O233wgLC6NPnz6MHTuWwsJCHA7rf/ucOXNISkpi7ty5JV5rzpw59OnTp8S1H374gdatWxd/HBISctzHAWrVKv8Fr8dTu3bt0/p+IlKFeb2wYoV13rEj2O2BzSOBs/A5SNsK4bWh/2MQHHnU23ILc5m5dSbvr3+fTQc3FV/vVqcbV7a4kl71e2G32dmZlsM1b/xMyoEcaoU5mTa6K23rR52uzwaAcGc4FIDbZgNP+ml9b5HqTCNOFSg1O5Wlu5eSmp1a4e81a9YsRo0aRevWrTnzzDOZNm0aO3bsYPny5QD06dMHt9vNL7/8UvycuXPnMm7cOJYsWYLHY23o5/F4WLJkSanCqVatWtSuXbv4iIqKOu7jtWvXJug46wZ27tzJsGHDiI6OJjY2losvvpiUlJQS2bp27UpYWBjR0dH07NmT7du3M23aNCZOnMiqVauKR7amTZsGlBwJOjQS9tFHH3HOOecQEhJCly5d2LhxI8uWLaNz586Eh4dz4YUXsm/fvuL3XbZsGeeffz5xcXFERUXRq1cvVhz64QpITk4G4JJLLsEwjOKPAT7//HM6duxIcHAwjRs3ZuLEiRQWFh7/f5yIBIbHA127WkfRv39SA6VthQWTrfNjFE273LuY/Mtk+n7cl4mLJrLp4CZCHCEMaz6MzwZ/xusXvM55Dc7DbrPz25+ZDH3ZKprqx4TwyT/POu1FE0CU64gRJ0/GaX9/kepKI04nYJomuYX+t/P8YssXTFoyCR8+bNgY3208g5sM9us1QhwhJ72LeEaG9Q9lbGwsAM2bN6du3brMmTOH7t27k5WVxYoVK/jqq6944YUXWLRoEX369OHnn38mLy+vVOFUngoKCujXrx89evRgwYIFOBwOHnnkEfr378/q1aux2WwMGTKEG264gQ8++ID8/HyWLl2KYRgMHz6ctWvXMmvWLH744QeAUkXckR588EGeffZZGjRowLXXXsuVV15JREQEzz33HKGhoQwbNowHHniAl19+GYCsrCxGjhzJCy+8gGmaTJ48mQEDBrBp0yYiIiJYtmwZCQkJTJ06lf79+2Mv+i31ggULGDFiBM8//zznnHMOW7Zs4cYbbyzOICIilYxpwtd3gTcPGveG1kNJzU5lR+YOkiKS2J61nfd/f595f8zDV9Rxr354ff7e4u8MaTqEKFfJ7z2Ltx7ghrd+ISuvkBa1I3j72q4kRJZ9g9zyFOWymkNYhZOm6omUFxVOJ5BbmEu397ud0mv48PHokkd5dMmjfj1vyZVLCA0K9f/9fD7uuOMOevbsSZs2bYqv9+nTh7lz5zJ+/HgWLFhA8+bNiY+P59xzz2Xu3LnFjzdq1IiGDRuWeM2zzjoLm+3wAOWCBQvo0KHDMR8HcLvdR803ffp0fD4fr7/+enFhOHXqVKKjo5k7dy6dO3cmIyODiy66iCZNrE5HLVu2LH5+eHg4DoejTFPzxo4dS79+/QC4/fbbueKKK5g9ezY9e/YE4LrrrisesQI477ySbWdfffVVoqOjmTdvHhdddBHx8dYC2+jo6BLvP3HiRMaNG8fIkSMBaNy4MQ8//DB33323CicRkcro9y9h8w9gd8KAyczY/BkTf56Ij9JtyXvU6cGVLa/knHrnYLeVntY5a20qt334K/mFPro2iuW1EZ2JCglct8bYEKuos5pDaMRJpLyocKqGbrnlFtauXctPP/1U4nrv3r254447KCgoYO7cufTu3RuAXr168corrwAUF1B/NX369BLFS1JS0nEfP55Vq1axefNmIiIiSlz3eDxs2bKFCy64gFGjRtGvXz/OP/98+vbty7Bhw6hTx7/NBwHatWtXfJ6YmAhA27ZtS1zbu3dv8cd79uzhvvvuY+7cuezduxev10tOTg47duw44ee0cOFCHn30cHHs9XrxeDzk5OQQGup/ASwiIhUkzw2zxlnnPW8nNSSciV+XLpoGNR7E9W2vp3F042O+1IdLd3DvZ2vwmXBBq0Sev6IDwUGBXTMXFxoNqDmESHlT4XQCIY4Qlly5xK/n7MnZw5D/DSnxD7DNsPG/i/9HYmiiX+/tr1tvvZWvvvqK+fPnU79+/RKP9enTh+zsbJYtW8acOXO4q6gVb69evbj22mtJS0tjyZIl/OMf/yj1uklJSTRt2vSY73uix4/kdrvp1KkT7733XqnHDo3oTJ06ldtuu41Zs2Yxffp07rvvPr7//nu6d+9epvc45Mh1VodGt/56zec7/P9p5MiRHDhwgOeee46GDRvicrno0aMH+fn5J/ycJk6cyNChQ0s9FhwcmKkaIiJyDPOegMxdEN0QzrmTHfvXFE/HO9IlzS45ZtFkmiYvztnMU99tBGB45yQevaQNDnvgl4/HhVprnNw2G2ZuOic36V9E/kqF0wkYhuH3dLlGUY148KwHmbhoIj7Th82w8WCPB2kU1aiCUlr/gP/f//0fn332WfF0u79q0qQJSUlJfPHFF6xcuZJevXoBUK9ePerVq8fkyZPJz8+v0PVNAB07dmT69OkkJCQQGXn07kUAHTp0oEOHDowfP54ePXrw/vvv0717d5xOJ16vt0KyLVy4kJdeeokBAwYAVhOL/fv3l7gnKCio1Pt37NiRDRs2lLl4FBGRANnzGyx+yTq/8EkICqF2WOmp3zbDRlJEUqnrAD6fyUNf/ca0n1MAuKVPE8ZecMZJr0sub4nhMQB4DYNcTxqa8yBSPlQ4VZChzYZyVt2z2Jm1k6SIpKP+o1yebrnlFt5//30+//xzIiIiSE21OvlFRUWVaB3ep08fXnrpJZo2bVo8dQ2sUacXXnihuImEvw4cOFD8nodER0cfdbTlqquu4j//+Q8XX3wxDz30EPXr12f79u3MmDGDu+++m4KCAl599VUGDx5M3bp12bBhA5s2bWLECGtPjeTkZLZt28bKlSupX78+ERERuFzlsyt6s2bNeOedd+jcuTOZmZncddddpVqvJycnF6+TcrlcxMTE8MADD3DRRRfRoEEDLrvsMmw2G6tWrWLt2rU88sgj5ZJNREROkWnCzDvBVwgtLoIzrP0Nv972dYnbDv3C82jfu/MLfdz58Sq+XPUnAA8OasXonhX3i9GTERcWjmGCaUBW7kEVTiLlJPDjydVY7bDadKndpcKLJoCXX36ZjIwMevfuTZ06dYqP6dOnl7ivT58+ZGVlFa9vOqRXr15kZWWd9GhT3759S7xvnTp1jrlJbGhoKPPnz6dBgwYMHTqUli1bct111+HxeIiMjCQ0NJT169dz6aWX0rx5c2688UZuueWW4imEl156Kf3796dPnz7Ex8fzwQcfnFTmo3njjTc4ePAgHTt25JprruG2224jISGhxD2TJ0/m+++/JykpqbhBRr9+/fjqq6/47rvv6NKlC927d+eZZ54p1WRDRCqJoCB48EHrOM7WCVLNrPoQdvwMQaHQ/3EAdmbu5LXVrwFwb7d7ebPfm3x76bcMbVZ66rU7r5Dr3lrGl6v+JMhu8Nzf21e6ogkgKtSJw2f9uU73HAxwGpHqwzBN0wx0iNMpMzOTqKgoMjIySk0T83g8bNu2jUaNGmldishf6O+HiFRpOWnw3y6Qsx/6ToSz78A0TW6ZfQsLdi2gW51uvHb+a8ecbnfAncfoactY/UcGoU47U67uxLnN40/zJ1E2Pp9Jtze643Hm8EZhHF2vmxPoSCKV1vFqg7/SVD0RERGp/n582Cqa4ltA95utSzt+ZMGuBThsDv7d7d/HLJp2puUw8s2lbN2fTUxoEFNHd6V9UvRpDO8fm83AbgYDOWTlZwU6jki1USmm6r344oskJycTHBxMt27dWLp06THvnTZtGoZhlDj0228REfGLzwfr1lmHr3Q3Nalm/lgOv0y1zgdOBoeTnIIcHl9mTdcb3Xr0MRs4rU/N5LIpP7N1fzb1okP45J9nVeqi6RC7aa3PdRfmBjiJSPUR8BGn6dOnM2bMGKZMmUK3bt149tln6devHxs2bCi1tuSQyMhINmzYUPxxZeliIyIiVURuLhzaINzthrCwwOaRiuPzwsx/ASa0+zsknw3AlNVTSM1OpV54PW5od8NRn7osJY3rpi0j01NI88Rw3r62G7WjqsYva+2G9Wc626vCSaS8BHzE6emnn+aGG25g9OjRtGrViilTphAaGsqbb755zOcYhkHt2rWLjyO7w4mIiIgU++VN2L0KXFFwwcMAbDq4iXfWvQPA+K7jj7pv4g+/7eHq15eQ6SmkU8MYPvpHjypTNAE4bNYm89lmgUZVRcpJQAun/Px8li9fTt++fYuv2Ww2+vbty6JFi475PLfbTcOGDUlKSuLiiy9m3bp1x7w3Ly+PzMzMEoeIiIjUAFl7YLZVLPG3+yE8AdM0eWTxIxSahZyXdB69knoV3747I5eft+zn1flb+Me7y8kr9PG3Fgm8e103okOdAfokTo7DEQ2A22aA1jmJlIuATtXbv38/Xq+31IhRYmIi69evP+pzzjjjDN58803atWtHRkYGTz31FGeddRbr1q2jfv36pe6fNGkSEydO9CtXDWs0KFIm+nshIlXO9/dDXgbUaQ+drwXgy61fsmLvCkIcIdzT9Z7iW6cv28H4GWvwHfFP3WWd6vP40LY47AGfoOO3kKBIKIQsmw08GRAcFehIIlVelfuXoEePHowYMYL27dvTq1cvZsyYQXx8PK+88spR7x8/fjwZGRnFx86dO4/52kFFe3nk5ORUSHaRquzQ34sg7XkjIlXBtgWwejpgwEVPg81ORl4Gk3+ZDMA/2v2DuuHWhu+7M3JLFU0GMOb8ZlWyaAIID7Km6lmFk2bbiJSHgI44xcXFYbfb2bNnT4nre/bsoXbtsm0aGxQURIcOHdi8efNRH3e5XLhcrjK9lt1uJzo6mr179wLWRq1qPCE1nWma5OTksHfvXqKjo7Hb7YGOJCJyfIX5MPNO67zztVCvEwAv/PoCaZ40Gkc1ZkSrEcW3b9ufXaJoAjCB7QdyqRsdeppCl69IZwTkHjHiJCKnLKCFk9PppFOnTsyePZshQ4YA4PP5mD17NrfeemuZXsPr9bJmzRoGDBhQLpkOFWyHiicRsURHR5f5FxoiIgG16L+wfwOExVtrm4C1+9fy0YaPALiv+30E2Q+Pnq/5o3RhYTcMkuOqZtEEEOWyNvLMstkgTyNOIuUh4O3Ix4wZw8iRI+ncuTNdu3bl2WefJTs7m9GjRwMwYsQI6tWrx6RJkwB46KGH6N69O02bNiU9PZ3//Oc/bN++neuvv75c8hiGQZ06dUhISKCgoKBcXlOkqgsKCtJIk1QvQUEwduzhc6k+0nfAvCet8wsegZAYvD4vDy9+GBOTixpfRJfaXYpv/2bNbp6YZa2rNrBGmuyGwWND21AnqnS3vaoiJsSaqufWiJNIuQl44TR8+HD27dvHAw88QGpqKu3bt2fWrFnFDSN27NiBzXZ4fvHBgwe54YYbSE1NJSYmhk6dOvHzzz/TqlWrcs1lt9v1g6KISHXldMJ//hPoFFIRvhkHhbnQsCe0Gw7Axxs/5rcDvxERFMGdne8svnXBpn3c/uFKfCb8vUsSt/2tKdsP5JIcF1qliyaAWiHRAGTZDBVOIuXEMGtYq6zMzEyioqLIyMggMjIy0HFERESkvGz4Bj74O9gccNNPkNCS/bn7GfzZYLIKsri3271c0eIKAH7dcZCrXl9CTr6XAW1r88IVHbHbqs+65s/WrOaBFVcR7POxrPEo6HVXoCOJVEr+1AYBH3ESERE57Xw+2LHDOm/QAGxVs3OaHCE/B7652zrvcQsktATg6V+eJqsgi1a1WjGs+TAANqRmMWrqMnLyvZzTLI5nhrevVkUTQGJ4NAAem42C3DQ0IVXk1KlwEhGRmic3Fxo1ss7dbggLC2weOXULJlvrmyLrw7lWAbUsdRlfbv0SA4P7u9+P3WZnZ1oO17yxhIzcAjo0iGbK1Z1wOarf1PyEsMP7NmV50ogNYBaR6kK/YhMREZGqbf8mWPicdX7h4+AKp8BbwCOLHwFg2BnDaBPXhr1ZHq5+Ywl7s/I4IzGCqaO6EOaqnr9DjgkNxuGzCsKs3PTAhhGpJlQ4iYiISNVlmtaeTb4CaHYBtLgIgLd/e5utGVuJDY7l/zr8Hxk5BYx4YynbD+SQFBvC29d1JTrUGeDwFSciOAi715qgl+5JD2wYkWpChZOIiIhUXWs/hW3zwBEMFz4JhsGf7j95ZfUrANzZ+U6CjDCufWsZ61OziI9w8e513UiMDA5w8IrldNiw+6zCMDM/K8BpRKoHFU4iIiJSNXky4Nt7rfNzxkKstW7tiaVPkFuYS8eEjvRrMJCb3l3B8u0HiQx28M51XWlYq2asabObVkv1rILsACcRqR5UOImIiEjVNOcxcO+B2CbQ8zYA5u2cx487f8RhOLi3678Z8/Eq5m/cR0iQnamju9Cids3ZisRuhALg9uYGOIlI9aDCSURERKqe3atg6avW+cCnwOEitzCXSUsnAXB1q6t5a34eM1fvJshuMOWaTnRqWLN6y9ltEQDk+PICnESkeqierWRERESOx+GAm28+fC5Vi88HX40B0weth0KT8wB4fc3r7HLvonZYbTx7z+P9JTswDHhmeHt6NY8PcOjTL8hmja65DRMKPBBUvdd1iVQ0fbcQEZGax+WCF18MdAo5Wb++Dbt+AWcE9HsMgG0Z25i6dioAHcNG8dq8PwF4dEhbLmpXN2BRA8kZFA0+cNts1nowFU4ip0RT9URERKTqyN4P3z9onfe5FyLrYJomjy55lAJfAU3DOzN9nrX56z39W3BltwYBDBtYYUHWVL0sm2EVTiJySlQ4iYhIzWOasG+fdZhmoNNIWWXsgs/+AZ50SGwDXW8EYFbKLJbsXoLDcLJ6VR/A4B/nNuafvZsENG6gRTgPFU42yMsMcBqRqk9T9UREpObJyYGEBOvc7YawmtGeukpb8TZ8ebu1rgmg2flgd5CVn8WTy54EwLOvN978WgzvnMS4C1sEMGzlEHlk4aRNcEVOmUacREREpHLL2FWyaAJY+Dxk7OKllS+xP3c/Zn4cufvPYUDb2jw2tC2GYQQubyURE2I1h7AKJ404iZwqFU4iIiJSue3fXLJoAjC9rN8xj/d/fx+A3NTBnNO0Ds8Mb4/dpqIJIDa4qKveoeYQInJKVDiJiIhI5bbp21KXfIadBzZ/ig8fBZntaBvblSlXd8LlsAcgYOUUFxoNQKbWOImUCxVOIiIiUnn99gUsLmodbxT92GLYeb/rSH7P3IjpdVLfO5xpo7sQ5tLS7SPFh1ndBbNtBr7c9MCGEakG9C+MiIiIVE571sFnN1nn3W6Cs26DtK3scETx5A83gg1Ccgbw3rUXEB3qDGzWSigxPAYAn2GQk5tGeIDziFR1GnESERGRyif7AHxwBRRkQ6NecMGj7CaWOXnNGT7rRUxbNkZ+XaYPH0tipDZ2PZpaoWHYTGu9V6bnYIDTiFR9GnESEZGax+GAkSMPn0vl4i2Aj0dC+naISYbLpzF9xZ+Mn7EGgrcTlvwzAA+d/QCN46MCm7USiwoNwuENIt+RT6bnIHUDHUikitN3CxERqXlcLpg2LdAp5Fi+vRdSFoAzHK74kN0FIYyfsQjTnkZI3Q8BKEjvTLe6HQMctHILCbJj9zmBfDI8WYGOI1LlaaqeiIiIVB7L34Klr1rnQ1+FhJZs25+NPXIZYU2fxO48iGmC11OblP05gc1ayRmGgd10AZBVoMJJ5FSpcBIRkZrHNCE72zpMM9Bp5JDti2DmndZ5n/ugxUAAdmXtxlVnBof2tDUMcCXOJCxMxcCJ2AkFwF2oIlPkVKlwEhGRmicnB8LDrSNHP1BWCuk74aNrwFcArYbAuWOtyzn5PDnnewyjZIFrGCZ57AtA0KrFboQBkO3zBDiJSNWnwklEREQCKz8HPrwSsvdB7bYw5CUwDHw+k399tBx3yHelnmIzbCRFJAUgbNXisEUCkG0Wgs8b4DQiVZsKJxEREQkc04TPb4HU1RAaB39/H5zWKMkr87fwc/rrOEJ2EWRzYivaANdm2Hiwx4PUDqsdyORVQpDD6jqYZbNBXmaA04hUbeqqJyIiIoHz09OwbgbYHDD8HYhuAMCSrQd4duk0nIlLAYNn+zxD85jm7MzaSVJEkoqmMgoJioSCosLJkwEhMYGOJFJlqXASERGRwNjwDcx+2Dof8B9oeBYA+9153DzjI4ISvgTgjo63c279cwFUMPkpIiiiqHAywKMRJ5FToal6IiIicvrtXQ+f3gCY0Pk66HwtAF6fyT8//B5PzDQMw0e/hgO4ts21gc1ahUW4IgBwHxpxEpGTpsJJRERETq/cg/DhFZCfBQ17woVPFD/09A+rWed9DpsjhyaRLXjk7IkYh/qQi9+iXVZziCwVTiKnTFP1RESk5rHb4bLLDp/L6eMthI9HQ9pWiGoAw94GexAA8zfu5c2Nk3BEpBLuiGHKBS8Q7AgOcOCqLSbkiMJJzSFETokKJxERqXmCg+HjjwOdomb6/gHYOgeCQuGK9yEsDoDUDA+3ffMkjuh12HDw8vnPaz1TOagVckRXPY04iZwSTdUTERGR02Pl+7D4Ret8yMvWnk1AodfHqOmv443+FoB/d7uP9gntAxSyeokPjQYOFU4acRI5FSqcREREpOLtXAZf3m6dn3s3tB5S/NC/v/6eP4KmAjAoeTjDWlwagIDVU0K4NeKUbzPIy00LcBqRqk2Fk4iI1DzZ2WAY1pGdHeg01V/mnzD9KvDmQ4uLoPf44oc+X72Rr1IfxbDl0zSiAw+dMy6AQaufxPBoMK3zLI8KJ5FTocJJREREKk6BBz68Ctx7IL4lXDIFbNaPHykHMrnv57uxOQ8SZktk2sAXcNi0/Lo8RYe4cPisBiiZuemBDSNSxalwEhERkYphmtb0vD9XQEgMXPEBFO0rlF/o46oZ90LIFgzTxdQLXyLKFRXgwNVPeLADu88JQIYnPbBhRKo4FU4iIiJSMRb9F1Z/CIYdLn8LYhsVP3TDZ/8l0zkPTIP7uz5Cy7jmAQxafdltBnafC4DM/KwApxGp2lQ4iYiISPnb/IPVehyg/yRo3Kv4oRcXfc/y7DcBGJA0istb9Q9EwhrDgbUXlrtQ6/lEToUKJxERESlf+zfDx9eC6YMO10DXG4sfWrpzCy//fj+G4aWBqwePn/evAAatGeyEAeD2egKcRKRqU+EkIiIi5ceTAR/8HfIyIKkbDJxsdS8E0nPd3PTd/2HYs3H5kvjwkqcxih6TiuOwhQOQ48uz1p2JyElR6xoREal57HYYMODwuZSP9B3w8Wg4sAki68Hwd8Fhra8xTZPhM/5FgWMneMN588KXiHCFBzhwzRBkt5puZNmAghxwhgU2kEgVpcJJRERqnuBgmDkz0CmqlxVvwxe3UbxpUPsrITyh+OF/fTuZPwsXY5p27jzzUdrVSQ5IzJrI6YgCH7gNG3gyVTiJnCRN1RMREZFTk7GrZNEEsOBp6zrw/ppv+CH1bQDOjrme0Z3OC0DImivcGQlAlt1mTaUUkZOiEScRERE5NTsWU6JoAjC9kLaVtfluHv/lAQybSS1vH14cdEtAItZkEc5w8ECWzQZ5mYGOI1JlacRJRERqnuxsCAuzjmy1aD4l3kL4+YXS1w076eFxXPvNzZg2D7a8Jnx42STsNjWDON2iXEUjTjZDI04ip0AjTiIiUjPl5AQ6QfUw73HY/Ss4gsGbb7UgN+wUXvQ018x7jFxzL76CGJ45dzK1I7W2JhBigg81h9BUPZFTocJJRERETs62+TD/Ket8yEuQ1B3StkJsY+5d8SYp2SsxfUH8vcED9G3RJLBZa7CYkAgA3CqcRE6JCicRERHxX/Z++PQGwLQ2uW1zqXU9qh4f/P4p3+z4CIBmxg38u+/fApdTiAuNBjTiJHKqVDiJiIiIf0wT/vdPcKdC3Blw4RMApGan8uOOH5m09EkAnFn9mHrtddi0rimgEsKjAcg2DHyeDC1wFzlJKpxERETEP4tfgk3fgd0Fl08FZxgzNs1gws8TMIu66/k8dXl10HiiQ50BDisJYdYaJ9MwcOceIDLAeUSqKv3SQURERMruz1/h+wet8/6PQWJrUrNTSxRNALbgVOrFFQQopBwpLiwcu8/6kS/Tkx7YMCJVmAonERGpeWw26NXLOmz6VlhmeVnwybXgK4AWF0Hn6wD4dfemEkWTxcfK3ZtPf0YpJSLYgd1nTTLKyE0PbBiRKkxT9UREpOYJCYG5cwOdomoxTfhqjNU1LyoJLv4vGNbapTV7th7ldgNffq3TnVKOIjjIjt3nAvLJ0Aa4IidNv2YTERGRE1v1Aaz5CAw7XPo6hMQAVkOIT1NeAazayvqvQX7qUDrUSw5QWPkru+kCwF3gDnASkapLI04iIiJyfPs3wcyx1nmf8dCgOwCFvkLumX8POYVZeHPrk/vHFdic6RgFcTw6+GzqRIUEMLQcyUEoAO5CbfwscrJUOImISM2TnQ3JydZ5SgqEhQUyTeVWmAefjIaCbEg+B84eU/zQK6tfYcXeFZheF949V/HJDQPILzRJjgtV0VTJ2I1wANxmXoCTiFRdKpxERKRm2r8/0Amqhu8fgNQ1EFoLhr4GNjsAy1KX8erqVwHwpF7CzWd1pVPD2EAmleNw2K0m5DkUgrcA7EEBTiRS9WiNk4iIiBzd+q9hyRTrfMgUiKwDwEHPQcbNH4fP9FGQ3olEWw/+2atJAIPKiTgd0QBk2WxWd0QR8ZsKJxERESktYxd8frN13uNWaH4BAKZpcv/C+9mbuxdffjye1Iv598CWhDjtAQwrJxIaFAGA22YD7eUkclIqReH04osvkpycTHBwMN26dWPp0qVlet6HH36IYRgMGTKkYgOKiIjUJD4vzLgBcg9CnfbwtweLH3rv9/eY98c8DBzk/nEFZzWuw4Vtagcuq5RJhNMqnLJsNvBkBDiNSNUU8MJp+vTpjBkzhgcffJAVK1Zw5pln0q9fP/bu3Xvc56WkpDB27FjOOeec05RURESkhpj/H9i+EJzhcNmb4HAC8NuB33h6+dMA5KYOxCiox4TBrTGK9nOSyutw4WSAR3s5iZyMgBdOTz/9NDfccAOjR4+mVatWTJkyhdDQUN58881jPsfr9XLVVVcxceJEGjdufBrTioiIVHMpC2HeE9b5Rc9ALWvtUnZBNnfPv5sCXwHOvHYUHOzOiB4NaZ4YEcCwUlYxwVZzCI04iZy8gBZO+fn5LF++nL59+xZfs9ls9O3bl0WLFh3zeQ899BAJCQlcd911pyOmiIhUNzYbdO5sHbaA/w6x8shJg0+vB9MH7a+CdsOKH3psyWNsz9xOuD2OAylDqBXm4o6+zQMYVvwRGxIFHGoOoREnkZPhdztyu93O7t27SUhIKHH9wIEDJCQk4PV6y/xa+/fvx+v1kpiYWOJ6YmIi69evP+pzfvrpJ9544w1WrlxZpvfIy8sjL+/wngWZmfrHQkSkxgsJgWXLAp2icjFN+PwWyPoTajWDC58sfujLLV/yxZYvsGEja+cw8IVyd/8ziApRS+uqIjbEGnFya8RJ5KT5/Ws20zSPej0vLw+n03nKgY4nKyuLa665htdee424uLgyPWfSpElERUUVH0lJSRWaUUREpEpa+ips+BrsTmtdk8vaMDUlI4WHFz8MQOOgS3BnNODM+lFc3knfT6uShLAYADJtNsxcFU4iJ6PMI07PP/88AIZh8PrrrxMeHl78mNfrZf78+bRo0cKvN4+Li8Nut7Nnz54S1/fs2UPt2qU79GzZsoWUlBQGDRpUfM3n81mfiMPBhg0baNKk5D4S48ePZ8yYw7ucZ2ZmqngSERE50u7V8N191vkFj0CddgDke/O5e/7d5Bbm0iK6A8sWdQJgwuDW2GxqCFGVxIdbU/UKDYM8z0GCA5xHpCoqc+H0zDPPANaI05QpU7DbD+/X4HQ6SU5OZsqUKX69udPppFOnTsyePbu4pbjP52P27Nnceuutpe5v0aIFa9asKXHtvvvuIysri+eee+6oBZHL5cLlcvmVS0REqrmcHGjVyjr/7TcIDQ1snkDKc8Mno8GbD2cMgK43Fj/0zPJn+D3td6Jd0WT/MQwwuKxTfTo0iAlcXjkpCWGRGCaYBmTmHlDhJHISylw4bdu2DYA+ffowY8YMYmLK5x/NMWPGMHLkSDp37kzXrl159tlnyc7OZvTo0QCMGDGCevXqMWnSJIKDg2nTpk2J50dHRwOUui4iInJMpgnbtx8+r8m+uRsObIbIenDxi1DUWnzeznm8+/u7APRLuJ3XVxpEuBzc09+/2SVSOUSHunD4HBTYC8n0pJNw4qeIyF/43Rxizpw55Rpg+PDh7Nu3jwceeIDU1FTat2/PrFmzihtG7NixA5s6HomIiJS/1R/ByvfAsMHQ1yA0FoA92Xu4b6E1dW9Ysyv5bHYUkM/tfZsRH6FZHFVRmNOO3eekwF5Ihic90HFEqiS/C6dLL72Url27cs8995S4/uSTT7Js2TI+/vhjv0PceuutR52aBzB37tzjPnfatGl+v5+IiEiNd2ALfPUv67zXPZDcEwCvz8u4BeNIz0unZWxL8vddyIHsXTRNCGfkWcmByyunxDAM7D4XkENGfnag44hUSX4P5cyfP58BAwaUun7hhRcyf/78cgklIiIiFagwHz65FvLd0LAnnHtX8UOvrXmNX/b8QqgjlJtbTeD9JX8C8OCgVgTZNQOkKrMTAkB2oQonkZPh97+Abrf7qG3Hg4KCtEeSiIhIVTB7IuxeCSEx1hQ9m9Xwafme5by86mUA/t3t37wyOxOvz6Rf60TOaRYfwMBSHhxGGABuryfASUSqJr8Lp7Zt2zJ9+vRS1z/88ENaHepQJCIiIpXTxu9g0X+t84tfgqh6AGTkZXDP/HvwmT4GNxmMPacLi7YewOWwcd9AfX+vDhw2ayuZHDNPTVFEToLfa5zuv/9+hg4dypYtWzjvvPMAmD17Nh988MFJrW8SERE57QzjcDtyowbtR7TrV/j0Ouu8203Qwpp6b5om9y+8nz05e2gY2ZAxHcYx6PmlANzUqwlJsTW4XXs14rBHA+C2GdY0TVdEYAOJVDF+F06DBg3if//7H4899hiffPIJISEhtGvXjh9++IFevXpVREYREZHyFRoK69YFOsXptXwafHn74Y/jzig+/XDDh8zZOYcgWxBPnvskby38kz8zPNSLDuGmXk1Kv5ZUScGOKPBCls0GnkwVTiJ+8rtwAhg4cCADBw4s7ywiIiJSETJ2wZd3lLz29Vho3o8NXjdPLXsKgDGdxhBhJDNl/jwA7hvYkhCnHakewp0RkHuocMoonqYpImVzUu1x0tPTef3117n33ntJS0sDYMWKFezatatcw4mIiEg5OLAZ+MuaFtNLzr7fGTtvLPm+fHrV78VVLa/i4a9+I7/QR8+mtejfpnZA4krFiCgaYcqy2SBPDb1E/OX3iNPq1avp27cvUVFRpKSkcP311xMbG8uMGTPYsWMHb7/9dkXkFBERKT85OdCli3W+bJk1da86yzlQ+pphZ9LOb0jJTCEhJIGHez7Mgk37+e63PdhtBg8Oao1Rk9Z/1QBRTqtwctsMa8RJRPzi94jTmDFjGDVqFJs2bSI4OLj4+oABA7SPk4iIVA2mCb/9Zh01obvY718WnRQVQoadmefcyP92fIfNsPH4uY8T5ohiwpfWuq+RPZJpnqj1L9VNbEgUcMRUPRHxi98jTsuWLeOVV14pdb1evXqkpqaWSygREREpJ+59hwunqz4GRzA7XcE8PPf/ALix3Y10qd2F1+ZvZeu+bOLCndxxfrMABpaKEhsSCahwEjlZfhdOLpfrqBvdbty4kfh4bY4nIiJSqax8D3wFULcDNDufAm8Bd31zDdkF2XRM6Mg/2v2DvZkenpu9CYC7+7UgMjgowKGlIsSHRgMqnEROlt9T9QYPHsxDDz1EQUEBAIZhsGPHDu655x4uvfTScg8oIiIiJ8nns9qQA3QaDcDzvz7PugPriHRG8sS5T+CwOXhi1gbceYWcmRTNZZ3qBy6vVKj4sGgAcmw2Cj3pAc0iUhX5XThNnjwZt9tNQkICubm59OrVi6ZNmxIREcGjjz5aERlFRETkZKTMh4PbwBkBbS7li81fMG3dNAAe7vkwtcNqs3z7QT5d8QcAEwe3xmZTQ4jqqnZEdPF5dm5a4IKIVFF+T9WLiori+++/Z+HChaxatQq3203Hjh3p27dvReQTERGRk/XLVOu/7Ybx1uZPeeqXp4ofSs9Lx+szmfCF1RDi8k71aZ8UHYCQcrrEhoZg99nw2nxk5B4kKtCBRKqYMhVOsbGxbNy4kbi4OK699lqee+45evbsSc+ePSs6n4iISPkzDGjY8PB5deTeC+u/AiC1zWCemvd/JR6euGgi+/cms2ZXBhEuB3f3bxGIlHIahQc7cPiC8NryyNBUPRG/lWmqXn5+fnFDiLfeeguPx1OhoURERCpUaCikpFhHdd3D6dd3wVcI9Tqz0VH6273P9PHSwiUA3HF+c+IjXKc7oZxmQXYbdp/1/zlTG+CK+K1MI049evRgyJAhdOrUCdM0ue222wgJCTnqvW+++Wa5BhQRERE/+Xyw4i3rvPNoNh3cVOoWAxsZmVE0SwhnRI+GpzmgBIrdDAYyySrMCXQUkSqnTIXTu+++yzPPPMOWLVsAyMjI0KiTiIhIZbV1DhxMAVcUtB7Kt9+OAsDAwMTEho3c1EswC6OYMLg1QXa/e0VJFWXHGmF1q3AS8VuZCqfExEQef/xxABo1asQ777xDrVq1KjSYiIhIhcnNhXPPtc7nz4djzKKospYfbgqxLmsbv6f9TpAtiA8GfkBGXgZPfLmf5QdNLmxTm55N4wKbVU4rhy0cgGwzL8BJRKqeMv2KKTY2lv379wPQp08fnE5nhYYSERGpUD4f/PKLdfh8gU5TvrJSYf3X1nnn0Xy84WMA+jbsyxmxZ7BvXxLLt5q4HDbuHdAygEElEIJskQDk4IXC/ACnEala1BxCRESkOvn1XTC9UL8r7piGfL3NKqIub345OfmFPDrzNwD+2bsJSbHVtDGGHFNQUDQAmTYbqEGEiF/UHEJERKS6+EtTiK+3fU1uYS6NohrRObEzD335G39meKgdGcxNvZoENqsERFhQBOSB22YDTwaEaaqmSFmVacTp3XffZcCAAbjdbgzDICMjg4MHDx71EBERkQDZ8iOk74DgKMxWQ/h4ozVN77Jml/Hy3C1M/TkFgD2ZHj5fuSuAQSVQIpwRAGTZbKC9nET8ouYQIiIi1cWhphBnXsHajC2sT1uP0+akW8L59HtnRfFtJnDvjLWc2zyeOlHVrDGGHFekKwKyDhVOmqon4o8yFU5H2rZtW0XkEBERkVORuRs2fGOddxrNxxvfB+D85PPZsbf0BBOvaZKyP0eFUw0TE2w1h8g6NFVPRMqszBs3DBgwgIyMw3/BHn/8cdLT04s/PnDgAK1atSrXcCIiIhUmLs46qotf37GaQjToQVZ0PWalzAKsphBrdqWXut1uGCTHqTlETRMTEgVAls1QcwgRP5W5cPr222/Jyzvc8/+xxx4jLS2t+OPCwkI2bNhQvulEREQqQlgY7NtnHWFhgU5z6nxeWF7UFKLTaGZunUluYS6NoxrTPq4Dn6/6EwDDsG6xGwaPDW2j0aYaKK6ocHJrxEnEb2Weqmea5nE/FhERkQDZ/ANk/gHB0ZgtB/HxrGsAa7Rpweb9bD+QQ0Swg89v6cmezDyS40JVNNVQ8eHRgDVVz8xNxwhsHJEqxe81TiIiIlLJLJ9m/bf9lazO2MTGgxtx2V0MajKIMR9sBOCyTvVpHB9O4/jwwOWUgEsMs0acvIZBrucgmqwpUnZlnqpnGAaGYZS6JiIiUuXk5kLv3taRmxvoNKcmYxdstNYz0WkUH2+wWpD3S+5HZnYQP27YC8A13RsGKqFUIglhkRhFk4Yycw8ENoxIFePXVL1Ro0bhcrkA8Hg83HTTTYQVzQ0/cv2TiIhIpebzwbx5h8+rsl/fAdMHDXuSGVWHb1O+Baxpeu8u2Y5pwjnN4jTSJABEhjhx+IIosBeQ4UmndqADiVQhZS6cRo4cWeLjq6++utQ9I0aMOPVEIiIiUjbeQljxtnXeaTRfbvkSj9dD0+imnBHdhtHLfgQ02iSHBQfZsHsPFU7qqifijzIXTlOnTq3IHCIiIuKvzd9D5i4IicVsOYhPvr4CgMuaX8bXa1I5mFNAvegQ/tYyMcBBpbIwDAOHGQzkkFXgDnQckSqlzGucREREpJL5peiXmu2vZNXB9WxO30ywPZhBTQbx9uLtAFzZrQF2m9Yky2F2rI6K7oKcACcRqVpUOImIiFRF6TutESeATqP5eOPhphApe32s2pmO025jeJekAIaUyshhWOvdsn1VvDGKyGmmwklERKQqWvG21RQi+RwyIuIPN4U443LeXmSNNg1oW5u4cFcgU0ol5LBFAJBtFlT95igip5EKJxERqZlCQ62jKvIWWt30ADqN4sstX5LnzaN5THOSQlrw5ao/AbimR3LgMkqlFeSw9nJy2wzIzwpwGpGqw+/Caf78+RQWFpa6XlhYyPz588sllIiISIUKC4PsbOso2lajStn0LWTthtBamC0uKp6md3nzy/l4+R/kFfpoXTeSjg2iA5tTKqWQIKtwyrLZQJ31RMrM78KpT58+pKWllbqekZFBnz59yiWUiIiIHEdxU4irWJG2jq0ZWwlxhNA/eQDvLrGm6Y3o0VAb1ctRhTutNU5umw08GQFOI1J1+F04maZ51H+IDxw4ULwZroiIiFSQg9th8w/WeadRxaNNFza6kBUpuexMyyUqJIjBZ9YLYEipzCKdkQBk2myQpxEnkbIq8z5OQ4cOBaz+/6NGjcLlOrzY1Ov1snr1as4666zyTygiIlLePB649FLr/NNPITg4sHn8seJtwIRGvUgPq8X3KVZnvcubX85TX1qjTZd3qk+I0x7AkFKZRbms5hAacRLxT5kLp6goaz6saZpEREQQEhJS/JjT6aR79+7ccMMN5Z9QRESkvHm98PXXh8+rCm/B4aYQnUfzxZYvyPfl0yK2BeEkM2/jPACu7t4wgCGlsosJPnKNkwonkbIqc+E0dao1nzo5OZmxY8dqWp6IiMjptuEbcO+BsHjM5gP4+KvLAGu06f2lOzFN6NU8nuQ4fY+WY6sVeqhwMtQcQsQPfq9xevDBB1U0iYiIBMLyoqYQHa7mlwOrSclMIcQRwnlJ/fjol50AXKPRJjmB+NBD7cg14iTiD78Lpz179nDNNddQt25dHA4Hdru9xCEiIiIV4GAKbPnROu84orgpxIBGA/jxt0zScwqoFx1CnxYJgcsoVUJCeAwAuTYbBZ6DAU4jUnWUeareIaNGjWLHjh3cf//91KlTR61ORUREToflb1n/bdyHg6Ex/LDd6qx3efPLGfeB1RTi6u4Nsdv0fVmOLzE8svjcnXuAmABmEalK/C6cfvrpJxYsWED79u0rII6IiIiU4i2AX9+1zjuP5vPNn1PgK6BVrVbk59Rlza4UnA4bw7skBTanVAkxYSE4fHYKbV7Scw+qcBIpI7+n6iUlJWGaZkVkERERkaNZPxOy90J4ImbzC/lk0yeANdr0ziJrtOmidnWIDXMGMqVUEeFOB3ZvEACZWuMkUmZ+F07PPvss48aNIyUlpQLiiIiInAZhYWCa1lEVGh4d0RRi6b5f2Z65nVBHKN0S/sZXq3cDMKJHcuDySZVisxnYTWs/zoy8rACnEak6/J6qN3z4cHJycmjSpAmhoaEEBQWVeDwtLa3cwomIiNR4B7bA1rmAAR1H8snq/wIwsPFAvlx5gHyvj3b1o2ifFB3IlFLFOMxgIAN3YXago4hUGX4XTs8++2wFxBAREZGjWlHUFKLp3zgQHM4PO6ymEJc2u4wbX98BqAW5+M9uhAKQ7c0NcBKRqsPvwmnkyJEVkUNEROT08Xjgmmus83fegeDgwOY5lsJ8+PU967zTaD7f8jmFvkLa1GrD7r212JW+jejQIAadWTewOaXKcRgRAGT78gKcRKTq8HuNE8CWLVu47777uOKKK9i7dy8A33zzDevWrSvXcCIiIhXC64VPPrEOrzfQaY5t/VeQsx/Ca+Nrdj6fbCxqCnHG5by92GoKMaxzEsFB2kdR/BPksFqSZxsmFHgCnEakavC7cJo3bx5t27ZlyZIlzJgxA7fbDcCqVat48MEHyz2giIhIjXWoKUTHa1iydwU7s3YSHhROy4hzmb9xH4YBV3fTND3xn8sRDUCWzQbqrCdSJn4XTuPGjeORRx7h+++/x+k83Pb0vPPOY/HixeUaTkREpMY6sAW2zcdqCjGCjzd+DFhNIT75xZrt0bt5PA1qhQYwpFRVYU5rql6WzYC8zACnEaka/C6c1qxZwyWXXFLqekJCAvv37y+XUCIiIjXeodGmZuez3xXKnB1zABjc6FI+/mUnoBbkcvIigg4VThpxEikrvwun6Ohodu/eXer6r7/+Sr169collIiISI1WmAcr37fOO43mf5v/R6FZSLv4dvy2PYxMTyENYkPp1Tw+sDmlyopyWWucVDiJlJ3fhdPf//537rnnHlJTUzEMA5/Px8KFCxk7diwjRoyoiIwiIiI1y+9fQs4BiKiLr2nf4qYQlzW7jLcXWU0hru7eAJvNCGRKqcKig60RJ7cKJ5Ey87tweuyxx2jRogVJSUm43W5atWrFueeey1lnncV9991XERlFRERqll8ONYUYweI9v7DLvYuIoAgS7d34bXcmLoeNYZ2TAptRqrTY0GigaMRJa5xEysTvfZycTievvfYa999/P2vXrsXtdtOhQweaNWtWEflERETKX2goFHWFJbSSNVfYvwm2/wSGDTpew8crJgNwUZOLmL50DwCDz6xLdKjzeK8iclxxIVFAUXMIjTiJlInfhdMhDRo0oEGDBuWZRURE5PQwDAgLC3SKo1s+zfpvswvYF+Rizk6rKcT59S/myi+saXpqCiGnKj7MKpzcNhu+3PST29hTpIbx+++JaZp8/PHH3HzzzVx22WUMHTq0xHEyXnzxRZKTkwkODqZbt24sXbr0mPfOmDGDzp07Ex0dTVhYGO3bt+edd945qfcVERGpVAo8sPI967zTaD7b/Ble00v7+PYs3eiiwGtyZlI0betHBTanVHm1I2IA8BkGObkHA5xGpGrwu3C64447uOaaa9i2bRvh4eFERUWVOPw1ffp0xowZw4MPPsiKFSs488wz6devH3v37j3q/bGxsfz73/9m0aJFrF69mtGjRzN69Gi+/fZbv99bRERqqLw8GDXKOvLyAp3msN+/gNyDEFkfb5Pz+HTjpwAMbXYZ7y0uGm3qrg1v5dTFhYZhM63mIpmetACnEakaDNM0TX+eEBsby7vvvsuAAQPKJUC3bt3o0qUL//3vfwHw+XwkJSXxf//3f4wbN65Mr9GxY0cGDhzIww8/fMJ7MzMziYqKIiMjg8jIyFPKLiIiVVR2NoSHW+dud+WYtpexC967HPaug973sqDpWdw8+2YinZGMb/M+t763ltgwJz+PO4/gIHug00oVl1/oo8dbXch35DPdSKbViC8DHUkkIPypDfwecYqKiqJx48YnHe5I+fn5LF++nL59+x4OZLPRt29fFi1adMLnm6bJ7Nmz2bBhA+eee+5R78nLyyMzM7PEISIiUqmseBuebWMVTQBBIXy88WMABjcZzIdLUgEY1jlJRZOUC6fDht0XBECWuuqJlInfhdOECROYOHEiubm5p/zm+/fvx+v1kpiYWOJ6YmIiqampx3xeRkYG4eHhOJ1OBg4cyAsvvMD5559/1HsnTZpUYiphUpLat4qISCWSsQu+vB1MX/GlPXMeYv4f8wDoFjeAnzbvxzDgqm5qyiTlx24GA5CZ7w5wEpGqwe+uesOGDeODDz4gISGB5ORkgoKCSjy+YsWKcgt3LBEREaxcuRK3283s2bMZM2YMjRs3pnfv3qXuHT9+PGPGjCn+ODMzU8WTiIhUHmlbShRNAJ+Fh+A1fXRM6MjctdbvOP/WIoGk2ErWOl2qNAehwAGyvTmBjiJSJfhdOI0cOZLly5dz9dVXk5iYiGGc/K7lcXFx2O129uzZU+L6nj17qF279jGfZ7PZaNq0KQDt27fn999/Z9KkSUctnFwuFy6X66QzioiIVKjYJtaeTUXFkxf4NMJafzWo8VAmvv8HANeoBbmUM7vNWtuX7fMEOIlI1eB34TRz5ky+/fZbzj777FN+c6fTSadOnZg9ezZDhgwBrOYQs2fP5tZbby3z6/h8PvIqU1ckERGRsoqqB60vgbVWB72FoaGkOhxEuaLITmtFVt5GkmuFck7TuAAHleomyGYthM82C8HnBZvWz4kcj9+FU1JSUrl2oxszZgwjR46kc+fOdO3alWeffZbs7GxGjx4NwIgRI6hXrx6TJk0CrDVLnTt3pkmTJuTl5fH111/zzjvv8PLLL5dbJhERkdMqr2iNSafRfOx0Q+oSBjcezAc/7wbg6u4NsdlOfoaHyNE4HVFgWpvgkpcJITGBjiRSqfldOE2ePJm7776bKVOmkJycfMoBhg8fzr59+3jggQdITU2lffv2zJo1q7hhxI4dO7DZDvewyM7O5uabb+aPP/4gJCSEFi1a8O677zJ8+PBTziIiIjVEaCgc2i8wNMDrhrwFkPITAKltLmb+gjsAaBF+Pi+l/klwkI3LO2ltrpS/EGcU5EGmzQYeFU4iJ+J34XT11VeTk5NDkyZNCA0NLdUcIi3N/03Ubr311mNOzZs7d26Jjx955BEeeeQRv99DRESkmGFAfHygU1j+WAYF2RAax4z03/CZPjondub7VdbDF59Zj6jQoOO/hshJCA8Khzxw2wzwZAQ6jkil53fh9Mwzz5xSQwgRERE5wpY5AOxq2J0PNnwIQL8GQ7h/gTVN75oeDQMWTaq3SKe19CLLZlPhJFIGfhdOo0aNqoAYIiIip1FeHhzaquLppyGQ3Ve3zmVGeBgTPKsxiy7N27STAm8jOjaIpk29qMBlk2otOviIwkmb4IqckN8b4NrtdvYemhd+hAMHDmC3qxuLiIhUAYWF8NJL1lFYGLgcngxSU39lYlxscdEE8NPBVzEcGYxQC3KpQLEhGnES8YffhZNpmke9npeXh9PpPOVAIiIiNUbKT+xw2PD9dQq8YRIdmcGFbY+9p6HIqYoLiQYOFU4acRI5kTJP1Xv++ecBMAyD119/nfDw8OLHvF4v8+fPp0WLFuWfUEREpLraMocGBYUYUGLEyTQNLm7TDpdDMzmk4sSFWSNOag4hUjZlLpyeeeYZwBpxmjJlSolpeU6nk+TkZKZMmVL+CUVERKqrrXOp7fXSM6o5P2VsBKyiKT91KDcM6RjgcFLdJYZb7cfzbDbyPQfRvCGR4ytz4bRt2zYA+vTpw4wZM4iJUa9/ERGRk5bxBxzYBIaNtKLNbZu7LmbF2lac37w59aJDAhxQqruE8MONRzJzDhAXwCwiVYHfXfXmzJlTETlERERqlqI25On1OvD7QWu0ad36tpiF4WpBLqdFdIgLh9dOod1LhuegCieRE/C7cAL4448/+OKLL9ixYwf5+fklHnv66afLJZiIiEi1tnUuAEtqN8M8sA+vJxGPx1o//MfB3AAGk5oi1GnH4XNSaM8lPVdrnEROxO/Cafbs2QwePJjGjRuzfv162rRpQ0pKCqZp0rGj5mOLiEgVEBICRVPQCQnAlDifr7hwmmtYbSG82U2LH77vs7X0PiOeOlGaricVxzAM7KYLyMVdkBXoOCKVnt/tyMePH8/YsWNZs2YNwcHBfPrpp+zcuZNevXpx+eWXV0RGERGR8mWzQXKyddj8/lZ46vaug5z9mEFhLMraCkBhdrPih72mScr+nNOfS2ocu2kV51kF+vMmciJ+f7f4/fffGTFiBAAOh4Pc3FzCw8N56KGHeOKJJ8o9oIiISLVTtL7pj4ZdOJC3B9O0481pVPyw3TBIjgsNVDqpQRyG9ecs26fpoSIn4nfhFBYWVryuqU6dOmzZsqX4sf3795dfMhERkYqSnw933WUdf1mre1pstQqnRbXqAxBBEzBdgFU0PTa0jabpyWnhsEUAkOPLA9M8wd0iNZvfa5y6d+/OTz/9RMuWLRkwYAB33nkna9asYcaMGXTv3r0iMoqIiJSvggJ46inrfMIEcJ7GHWwKPLB9EQCLjTwAgvLPAODm3k24pkdDFU1y2gQ5ijbBNYCCXHBqpFPkWPwunJ5++mncbjcAEydOxO12M336dJo1a6aOeiIiIieycwkU5uINT2TJwd8B2J2aBMBV3VU0yenlckRDIWTZbODJUOEkchx+F06NGzcuPg8LC2PKlCnlGkhERKRaK+qm93vDzmTmrCHEHkZWTj3qRYdo01s57cKDIq3CyW6DvEygTqAjiVRaJ9VKKD09nddff53x48eTlpYGwIoVK9i1a1e5hhMREal2Dq1viowFIM7RGrDTrXFsAENJTRXhsvYOcxuGNeIkIsfk94jT6tWr6du3L1FRUaSkpHDDDTcQGxvLjBkz2LFjB2+//XZF5BQREan6ctLgz5UALCpMByA/qwkA3RqpcJLTL9plrXHKtNvAkxngNCKVm98jTmPGjGHUqFFs2rSJ4ODg4usDBgxg/vz55RpORESkWtk2HzDJiT+DlWm/AbBzl9VZr1ujWgEMJjVVdPCh5hA28KQHNoxIJed34bRs2TL+8Y9/lLper149UlNTyyWUiIhItVQ0TW9FvTYU+AqIdSWS54klIcJFw1palC+nX62QKKBojZOm6okcl99T9VwuF5mZpYdyN27cSHx8fLmEEhERqVAhIbB27eHz06WoMcTi0BDIgDh7G7Zj0K1xLQzDOH05RIrEhRYVTrZDzSFE5Fj8HnEaPHgwDz30EAUFBQAYhsGOHTu45557uPTSS8s9oIiISLmz2aB1a+uwnVSfJP+lbYODKWBzsCj3TwByM61OtV21vkkCJD4sGoBsw8CXmx7QLCKVnd/fLSZPnozb7SYhIYHc3Fx69epF06ZNiYiI4NFHH62IjCIiIlVf0WjT/vod2Zi+2bq0w2r93F2FkwRInYhoAEzDwJ2bFtgwIpWc31P1oqKi+P7771m4cCGrVq3C7XbTsWNH+vbtWxH5REREyl9+Pjz2mHV+773gdFb8exatb1qS2AT2p9IgvCnr8kKJDXPSNCG84t9f5ChqhYVh8xn4bCYZuWlEBjqQSCXmV+FUUFBASEgIK1eupGfPnvTs2bOicomIiFScggKYONE6v+uuii+cfN6ijnqwqOg7b6ytDQBdk2O1vkkCJtzlwOELIt+WT4Yng6RABxKpxPyaqhcUFESDBg3wer0VlUdERKT62b0Kcg9iuiJZnGlN03MfbARofZMElsNuw+GzfnGQmaeueiLH4/cap3//+9/ce++9pKVpHqyIiEiZFE3T29awC3ty9uC0Odm0IwGAbo1VOElg2bE6S2YVuAOcRKRyK/NUvfnz59OjRw/++9//snnzZurWrUvDhg0JCwsrcd+KFSvKPaSIiEiVdqgNeWwd2LOJZlFtWewxiAh20KK2VpVIYDmw9hBzez0BTiJSuZW5cOrTpw+7d+9myJAhFRhHRESkmsnPgR2LAVhELgBRRivAWt9kt2l9kwSWw7B+CZ6jwknkuMpcOJmmCcCDDz5YYWFERESqnR2LwJtPYWQ9lqX9BkBmmvZvksrDYbdGPbONQvAWgt3vpssiNYJfa5zU9UdERMRPReub1jboSHZBNlHOKNalWO3HuzWuFchkIgA4HdEAuG02yMsMbBiRSsyvXymMGjUKl8t13HtmzJhxSoFEREQqXHAwLF16+LwiFa1vWhQZDdnQMqYT3+d6CXXaaV1X65sk8EKDIiEPsmw28KRDqEZCRY7Gr8IpIiKCkJCQisoiIiJyetjt0KVLxb+Pex+krgFgcb7VjTbCbAlAp4YxBNn9bm4rUu4inOFHFE4acRI5Fr8Kp+eff56EhISKyiIiIlK9bJsHQHZiG1an/Q5A+oFkwEs3rW+SSiLKFQlZkGUzwKO9nESOpcy/6tL6JhERqTby8+E//7GO/PyKe5+i9U2/1G1BoVlIUkQSq1PsgNY3SeURFRwFFI04aY2TyDGVuXA61FVPRESkyisogLvvto6Cgop5D9OELXMBWBRirQ9uGd2J/e58XA4b7epHVcz7ivgpNiQCKGoOoREnkWMqc+E0Z84cYmM1rUBERKRMDmyBzD/A7mRx9h8AhHmt/Zs6NIjG5bAHMp1IsbiQaEBrnEROpMyFU69evXA41NdfRESkTIqm6e1J6sSWzG0YGOzfXx+Abo00TU8qj7iww1P1zNz0wIYRqcTUzkdERKQiFLUhX5zQCIDWtVqzYpu1nkqNIaQyqR0eA0CBYZDnORjgNCKVlwonERGR8uYthG3zAVhs9wLQKqYTqZkeguwGHRrEBDKdSAnx4RFQtJQ9MzctsGFEKjEVTiIiIuXtzxWQl4kZHM3ijE0AuApbANCufjQhTq1vksojOsRFkM9ajpGeqxEnkWPxu3D6+uuv+fbbb0td//bbb/nmm2/KJZSIiEiVVjRNb3PDLuzP3U+wPZjUPbUBTdOTyic4yI7d5wQgM09d9USOxe/Cady4cXi93lLXTdNk3Lhx5RJKRESkQgUHw5w51hEcXP6vv8VqDLEoxiqWOiV2YlmK1a2sqwonqYQcptUyPyvfHeAkIpWX323yNm3aRKtWrUpdb9GiBZs3by6XUCIiIhXKbofevSvmtfPc8MdSABaZ1g+hrWI6MystF5sBnZNVOEnlYycEOEhWYU6go4hUWn6POEVFRbF169ZS1zdv3kxYWFi5hBIREamyti8EXyEF0Q1YnvYbAEH5ZwDQpl4U4S5t7SGVj8OwfobL8eYGOIlI5eV34XTxxRdzxx13sGXLluJrmzdv5s4772Tw4MHlGk5ERKRCFBTAiy9aR0FB+b520fqmlQ06kFuYS2xwLNt3RwJa3ySVl8MWAUC2mQ+mGeA0IpWT34XTk08+SVhYGC1atKBRo0Y0atSIli1bUqtWLZ566qmKyCgiIlK+8vPh1lutIz+/fF+7aH3T4vCiYqlON5amWJ3KumrjW6mknHZrE1y3DcjPDmwYkUrK7/kCUVFR/Pzzz3z//fesWrWKkJAQ2rVrx7nnnlsR+URERKqOzN2w73fAYHHePgDaxHTho33ZGAZ01fomqaSCg6KgALJsNvBkgCs80JFEKp2TmmhtGAYXXHABF1xwQXnnERERqbq2zQMgs05b1h5cD4A9rznwB2ckRhAVGhTAcCLHFu6MPFw45WUC9QIdSaTSKVPh9Pzzz3PjjTcSHBzM888/f9x7b7vttnIJJiIiUuUUTdNbVrcFvrTFJEcms3GXtdlt98aapieVV6QzHLLBfWjESURKKVPh9Mwzz3DVVVcRHBzMM888c8z7DMNQ4SQiIjWTaRY3hljkskaWetTtwfxFaYD2b5LKLcplrcnLshkqnESOoUyF07Zt2456LiIiIkX2rQd3KjiCWezeDkDb2M68mpoFqHCSyi0m5FDhZANPZoDTiFROfnfVExERkaMoGm36s0EXtmftwG7Y8eU0AaBJfBhx4a4AhhM5vlohVlc9q3BKD2wYkUrK7+YQpmnyySefMGfOHPbu3YvP5yvx+IwZM8otnIiISIVwueCrrw6fl4dDbcjjG8De7bSJa8OanXkAdNP6Jqnk4sKigSObQ4jIX/ldON1xxx288sor9OnTh8TERAzDqIhcIiIiFcfhgIEDy+/1CvMh5ScAFtmsDXV71O3BrAXW+iZtfCuVXUK4NeKUY7NRmHvw5Noui1Rzfv+9eOedd5gxYwYDBgyoiDwiIiJVz65foCAbX2gcSw5uAODMWl2Y/Ke1l5PWN0llVzs8pvjcnXuQ6MBFEam0/F7jFBUVRePGjSsii4iIyOlRUADTpllHQcGpv17RNL0NDTtzMO8goY5QPO76+ExoEBtKnaiQU38PkQoUGxqC3Wf9WJiZmxbgNCKVk9+F04QJE5g4cSK5ubkVkUdERKTi5efD6NHWkZ9/6q93qA15dDwAXWp3Yfl2a52IpulJVRDmdODwWW30D6o5hMhR+T1Vb9iwYXzwwQckJCSQnJxMUFDJXdBXrFhRbuFEREQqPU8G7FoOwGKvVSx1r9OdGXMPAJqmJ1WDzWZg9zmBPLLUHELkqPwunEaOHMny5cu5+uqr1RxCREQk5ScwveTVasKKtN8A6BDflQl/bAaguzrqSRXhIATIwl2QHegoIpWS34XTzJkz+fbbbzn77LMrIo+IiEjVUrS+6df67cjLXE5CSAIH02Mo9JnUiQqmfozWN0nVYCcUALfPE+AkIpWT32uckpKSiIyMLNcQL774IsnJyQQHB9OtWzeWLl16zHtfe+01zjnnHGJiYoiJiaFv377HvV9ERKRCbbUKp0Vh4QB0r9udpSkHAWt9k2ZmSFXhMKw/wzkqnESOyu/CafLkydx9992kpKSUS4Dp06czZswYHnzwQVasWMGZZ55Jv3792Lt371Hvnzt3LldccQVz5sxh0aJFJCUlccEFF7Br165yySMiIlJm6TvhwGYwbCz2pALW+qYlW631Tdr4VqqSIIe1l1M2XmtvMhEpwe/C6eqrr2bOnDk0adKEiIgIYmNjSxz+evrpp7nhhhsYPXo0rVq1YsqUKYSGhvLmm28e9f733nuPm2++mfbt29OiRQtef/11fD4fs2fP9vu9RURETklRN730eh34/eBGADrEd+HXnemAGkNI1eIsKpyybDZQgwiRUvxe4/Tss8+W25vn5+ezfPlyxo8fX3zNZrPRt29fFi1aVKbXyMnJoaCg4JhFW15eHnl5ecUfZ2bqHwIRkRrP5YKPPjp8frKKCqfFtZthHthH0+im/HnASX6hj7hwF43jwk49q8hpEhYUCd6iwsmTAWFxgY4kUqmcVFe98rJ//368Xi+JiYklricmJrJ+/foyvcY999xD3bp16du371EfnzRpEhMnTjzlrCIiUo04HHD55af2Gj7f4cLJaU3gKDFNT+ubpIqJdEWA54jCSURK8Huq3pE8Hg+ZmZkljtPp8ccf58MPP+Szzz4jODj4qPeMHz+ejIyM4mPnzp2nNaOIiFRTe9dBzn7MoDAWZ24FoEfdHixNSQOgW2NN05OqJdIVAYBbhZPIUfk94pSdnc0999zDRx99xIEDB0o97vV6y/xacXFx2O129uzZU+L6nj17qF279nGf+9RTT/H444/zww8/0K5du2Pe53K5cJ3KNAwREal+Cgvhs8+s80susUag/FXUhvyPhl3Ylb0Vh83BmXEdWb79J0Drm6TqiXFZa5wytcZJ5Kj8HnG6++67+fHHH3n55ZdxuVy8/vrrTJw4kbp16/L222/79VpOp5NOnTqVaOxwqNFDjx49jvm8J598kocffphZs2bRuXNnfz8FERGp6fLyYNgw6zhiHaxfDrUhr1UfgDPjz2Tr3gJy8r1EhwbRPCGivNKKnBaxodZ2M26boREnkaPw+1dsX375JW+//Ta9e/dm9OjRnHPOOTRt2pSGDRvy3nvvcdVVV/n1emPGjGHkyJF07tyZrl278uyzz5Kdnc3o0aMBGDFiBPXq1WPSpEkAPPHEEzzwwAO8//77JCcnk5pqtX8NDw8nPDzc309HRETEfwUe2G41MVpsWIVXjzo9WLLNmqbXJTkWm03rm6RqiQs9oqueCieRUvwunNLS0mjcuDEAkZGRpKVZ3yTOPvts/vnPf/odYPjw4ezbt48HHniA1NRU2rdvz6xZs4obRuzYsQOb7fDA2Msvv0x+fj6XXXZZidd58MEHmTBhgt/vLyIi4redS6AwF294bZYc/B2wNr597tei9U2apidVUHxoNGCtcTJzM1DpL1KS34VT48aN2bZtGw0aNKBFixZ89NFHdO3alS+//JLo6OiTCnHrrbdy6623HvWxuXPnlvi4vDbeFREROWlF3fR+a9iJzJw1RARF0CKmFcu2/QhAt0ba+FaqntoR0QAUGga5njRCAxtHpNLxe43T6NGjWbVqFQDjxo3jxRdfJDg4mH/961/cdddd5R5QRESk0ila37Q40hpZ6lK7C5v25JCVV0i4y0GrupGBTCdyUuLDIjFM6zwjNy2wYUQqIb9HnP71r38Vn/ft25f169ezfPlymjZtetzudiIiItVCThr8uRKARYXpgNWG/ND6ps7JMdi1vkmqoMiQIBy+IArsBWTmplMn0IFEKpmT6L9aUsOGDWnYsGF5ZBEREan8ts0HTHLiz2Bl2m+AtfHtpGX7AU3Tk6oryG7D4XNSYC8gPU/NIUT+6qQKp9mzZzN79mz27t2Lz+cr8dibb75ZLsFEREQqjNMJU6cePvdH0TS9FfXaUJCxjDphdUgKb8DSbRsB7d8kVZvddAHZuPPdgY4iUun4XThNnDiRhx56iM6dO1OnTh0MQ9MRRESkigkKglGjTu65RY0hFoeGQIY1TW/L/mwO5hQQEmSnbb2ocospcro5CAXScBfmBDqKSKXjd+E0ZcoUpk2bxjXXXFMReURERCqvtG1wMAVsDhbl/glY0/SWbD0AQMeG0TgdfvddEqk0HEYYANk+T4CTiFQ+fv/rnp+fz1lnnVURWURERE6PwkKYOdM6CgvL/ryi0ab99TuxMX0zAN3qdCtuDKH1TVLVOewRAOSY+fCX5RgiNZ3fhdP111/P+++/XxFZRERETo+8PLjoIuvIyyv784rWNy1JtDaCbxHbghhXTHHhpPVNUtU57dEAZNkM0DonkRL8nqrn8Xh49dVX+eGHH2jXrh1BQUElHn/66afLLZyIiEil4fPC1nkALCr67tmjTg9SDuSwLysPp91G+6TowOUTKQfBQZGQD26bDTwZEKw9yUQO8btwWr16Ne3btwdg7dq1JR5TowgREam2dq8CTzqmK5LFmdY0ve51D69vap8UTXCQPZAJRU5ZhNMqnLJsNsjLDHQckUrF78Jpzpw5FZFDRESkcvvtcwC21W3HnpwdOG1OOiZ05JMF6wHo1ljT9KTqi3RFgLuocPJoLyeRI/m9xmnq1Knk5uZWRBYREZHKacXbsPBZABbvXwVAh8QOBDuCtb5JqpVol9UcQoWTSGl+F07jxo0jMTGR6667jp9//rkiMomIiFQeGbvgy9uLP1wU4gKge0wr/jiYw670XBw2g04NYwKVUKTcxIZY+5BZhZOm6okcye/CadeuXbz11lvs37+f3r1706JFC5544glSU1MrIp+IiEhgpW0B02rLXAAsCwkGoIcrkSVbrdGmNvWiCHX6PftdpNKJDbWaQbhthkacRP7C78LJ4XBwySWX8Pnnn7Nz505uuOEG3nvvPRo0aMDgwYP5/PPP8anvv4iIVGZOJ/z3v9bhdB7/3tgmgNX8aJ3LSbbNRpTXR4sG57D00P5NWt8k1UR8qDVyajWHUOEkcqRT2t48MTGRs88+mx49emCz2VizZg0jR46kSZMmzJ07t5wiioiIlLOgILjlFuv4y7YapUTVg7rtAVhUNNrULbYl9ugGLNlmddTrpvVNUk0khltT9XJtNgpyDwY4jUjlclKF0549e3jqqado3bo1vXv3JjMzk6+++opt27axa9cuhg0bxsiRI8s7q4iISGDkWAXS4jotAOjR6u/syfSQciAHmwGdk1U4SfVQOzy6+Dyr6M+9iFj8LpwGDRpEUlIS06ZN44YbbmDXrl188MEH9O3bF4CwsDDuvPNOdu7cWe5hRUREyoXXC3PnWofXe/x73fsgfQfZho3VefsA6F6ne3E3vVZ1I4kMPsGolUgVERMagt1n7UeW7kkPbBiRSsbvlawJCQnMmzePHj16HPOe+Ph4tm3bdkrBREREKozHA336WOduN4SFHfveP1cA8EtCYwrNfJIikqgfUZ+Xt64BoGtyrYpOK3LaBAfZcHiD8Nq8ZOamBzqOSKXid+H0xhtvnPAewzBo2LDhSQUSERGpVHYtB2B2VDQU7KVdXDsANYaQaskwDBymizw8ZORnBTqOSKXiV+Hk8/mYNm0aM2bMICUlBcMwaNSoEZdddhnXXHMNhmFUVE4REZHA2LWcGeFhfFawF4Cvt31Nq5gObNobDkAXrW+SasZOMJBBdmF2oKOIVCplXuNkmiaDBw/m+uuvZ9euXbRt25bWrVuzfft2Ro0axSWXXFKROUVERE4/0yR19womxh0ujkxMnlrxGIYjgzMSI4gNO0E7c5EqxmFYU1fd3twAJxGpXMo84jRt2jTmz5/P7Nmz6XNoXniRH3/8kSFDhvD2228zYsSIcg8pIiISEAe3scObjc8IL3HZxIfNuZ+ujdoFKJhIxQkq+vOe48sLcBKRyqXMI04ffPAB9957b6miCeC8885j3LhxvPfee+UaTkREJKB2raBBQSGG+Zfrpg1ffpzWN0m1FOSw9nLKNkwo8AQ4jUjlUebCafXq1fTv3/+Yj1944YWsWrWqXEKJiIhUCruWU9vrJdlxuOuezbDhSb0EszCKrtr4VqohlyMagCybDfIyAxtGpBIp81S9tLQ0EhMTj/l4YmIiBw9qh2kREakCgoLgyScPnx/LH7/gA/aZhQBM6DEBcs/gzt+20zgujISI4AqPKnK6hTkjoBCybAZ4MiA8IdCRRCqFMhdOXq8Xh+PYt9vtdgoLC8sllIiISIVyOuGuu45/j7cAdq8iJciB25dHsD2Yi5tezJOzNgFotEmqrUhnBOQUjTh5NOIkckiZCyfTNBk1ahQul+uoj+flaQGhiIhUI3vWgTePtZFxALSq1QqHzcES7d8k1VykKwIAt80GnvTAhhGpRMpcOI0cOfKE96ijnoiIVAleL6xYYZ137Ah2e+l7ija+XRNdB8igTVwb3HmFrN2VAUDXRrVOU1iR0ysm2GoOoTVOIiWVuXCaOnVqReYQERE5fTwe6NrVOne7ISys9D27rMJqrdMO+dA2ri0rth/E6zOpHxNCveiQ0xhY5PSpFXpE4eTJCHAakcqjzF31REREapRdy8kH1hdYPzi2iWvDkm0HAK1vkuotrrhwMlQ4iRxBhZOIiMhf5WXBvvWsdzkpNL3EuGKoF16PpUXrm7prmp5UYwlh0YC1xsnMVeEkcogKJxERkb/6cyVgsibK2oajTVwb8gp9rNp5aH2TRpyk+jpUOPkMg5zctMCGEalEVDiJiIj8VVFjiLWRVoHUNq4tv+5IJ9/rIzHSRcNaoYFMJ1Kh4sPDsZkGAOkqnESKqXASERH5q12/ALDW5gOgbXxbfvg91TqvF41hGAGLJlLRIoODcHit/mEZuemBDSNSiahwEhER+atdK8iwGaQUNYbYtCOaN35KAWD273uYvmxHAMOJVCybzcBuWvt2ZuRpjZPIIWVuRy4iIlJtBAXBgw8ePj9S5m7I3MW6EKvdeN2w+jz8xfbih03g3hlrObd5PHWi1JJcqieH6QLcuAuyAx1FpNJQ4SQiIjWP0wkTJhz9sT+L9m+KrQfkUy+0ORvMkrd4TZOU/TkqnKTachAKHMDtVeEkcoim6omIiBypqDHEmtAIADolnslfVzTZDYPkODWIkOrLYYQDkO3LC3ASkcpDhZOIiNQ8Ph+sW2cdPl/Jx3YtxwTWkAtAz6SONEsML37Ybhg8NrSNRpukWguyW784yDULwOcNcBqRykFT9UREpObJzYU2baxztxvCwqxznw92/coeu50DhTnYDTtNo5qz6+B8ACYNbUPvMxJUNEm1F+SIBh9k2WzWhtAh0YGOJBJwKpxEREQOSdsCeRmsjogCoHlMc7bszSc730tksINhnRtgt6kVuVR/oc5I8ECWzQBPhgonETRVT0RE5LBDG9/G1gWgTVwblm6zNgDt2ihWRZPUGBFOa6pels1mFU4iosJJRESk2B/WxrdrXMEAtI1ry5JtBwCrcBKpKSKdkcChqXqZAU4jUjmocBIRETlk13K8wDqv9YNi61qHR5y6NaoVwGAip1d0sDXi5NaIk0gxFU4iIiIAhXmQuoatQUHk+goIdYSSnxtHpqeQMKed1nUjA51Q5LSpVbSmKdNmA49GnERAhZOIiIgldS34ClgbYU3Jax3Xml9S0gHolByLw65vmVJzxIZavyjQiJPIYeqqJyIiNU9QEIwde/gcDm98G50IZjpt4tqw5PdD0/S0vklqloTQaOCIrnoiosJJRERqIKcT/vOfktcOddQLMiAf2tRqw3vbVDhJzZQYEQ1Ans1GvucgzsDGEakUNO9AREQEYNdyPIbBxnzrt+uRRmMOZOfjcthoWz8qwOFETq+E8MN/5jNyDgQwiUjlocJJRERqHp8PUlKsw+eD3HQ4sInfnUF48REXEsfm3dakjI4NYnA57IFMK3LaRYe4cHitP/cZuemBDSNSSWiqnoiI1Dy5udCokXXudkPqrwCsiakDmEUb3x4EtH+T1Ewuhx2Hz0mhPZcMT3qg44hUChpxEhERObS+KTwGsNY3Fe/f1FiFk9RMDtMFQFZBVoCTiFQOKpxEREQOddSzFQJQ29Wc1EwPQXaDDkkxgUwmEjB2ggFwF2QHOIlI5aDCSUREajbThD9+4aDNxh8F1kafGRm1ATizfjQhTq1vkprJYYQBkO31BDiJSOWgwklERGq2zD8hey9rg63fridHJrNqez6g9U1SswXZIgDIMfOsXzCI1HAqnEREpGb702oMsTa2PgBt49qyNMVqv9ytca2AxRIJtCCH1ZLcbQAFuYENI1IJqHASEZGarahwWhNqTUtKCjuDnf/f3n2HR1WlDxz/TktvJIGEhITQBJHQSQQUUJAILorYsCIiqxQVWNeyP1d0iyg2dGVFUeyIgOgqCkgVEJASWlCqBEIKoaVN2mTm/v44ySRDkkkCSSbl/TzPPJnce+bOydzcO/e955z3nM/DoNfRp62MbxLNl7sxAIBsvR4KslxbGSEaAElHLoQQovkxGmHyZPX89F40IMGWC4A1LwLIo1uYHz7u8jUpmi8fN1+wQI5eD/mZ4Bvq6ioJ4VLyjSCEEKL5cXeHuXPBZoWXI0k2GrhgzcOoN3IyzR/Ik256otnzc/cFM2TrdZAvLU5CSFc9IYQQzdfZw1CYw34vPwC6tOjCzuNqzpqYKEkMIZq3AHeVHCK7pMVJiGbO5YHT3LlziYqKwsPDg9jYWLZv315p2QMHDnDbbbcRFRWFTqdjzpw59VdRIYQQTYemwZkzkLAeNI39gWEAdPC/kj/OmtHpoJ8ETqKZa+GpkkOowCnDtZURogFwaeD01VdfMWPGDGbOnEl8fDw9evQgLi6O9PT0Csvn5ubSvn17Xn75ZUJDpZ+tEEKIS5SbC61awdApYIEENxMAbtYoALqE+uHvZXJhBYVwvaCSwMkgySGEABcHTm+88QYTJ05k/PjxdO3alXnz5uHl5cWCBQsqLN+vXz9effVVxo4di7u7ez3XVgghRFNkAX63qu55F86rm3KxMn+TEAR7laQjl656QoALA6fCwkJ27drFsGHDSiuj1zNs2DC2bt1aa+9TUFBAVlaWw0MIIYQo8YebiXybBV+TLwdOuAESOAkBEOKj0vHn6HXY8iRwEsJlgdPZs2exWq2EhIQ4LA8JCSEtLa3W3mfWrFn4+/vbHxEREbW2bSGEEI3fAV+VPa9zi64cPm0GIEYCJyEI8VEtTppOR07eORfXRgjXc3lyiLr27LPPkpmZaX8kJSW5ukpCCCEakN/8WwLgr28PQMdWPgT5SHdwIYK9fdDbdABk5J53cW2EcD2XzeMUHByMwWDg9OnTDstPnz5dq4kf3N3dZTyUEEKISh3QawDkm8MB6aYnRAkvNwNGm4lCfSFZBdJVTwiXtTi5ubnRp08f1q5da19ms9lYu3Yt/fv3d1W1hBBCNDPHi9TY18QU1WVPuukJoeh0OoyauvmcKYGTEK5rcQKYMWMG48aNo2/fvsTExDBnzhzMZjPjx48H4IEHHiA8PJxZs2YBKqHEb7/9Zn+enJzMnj178PHxoWPHji77O4QQQjQyhVnQw8RZg55CvUYrz1AOH1RdkmLbBbm4ckI0HEbNA8gmx2J2dVWEcDmXBk533XUXZ86c4fnnnyctLY2ePXuycuVKe8KIkydPoteXNoqlpKTQq1cv+++vvfYar732GoMHD2bDhg31XX0hhBCN1dkDMNqT71u3w2Ky0trjCo5p0DbIi1B/D1fXTogGw4AXAOaiXBfXRAjXc2ngBDB16lSmTp1a4bqLg6GoqCg0TauHWgkhhGjSkncBsN/HH4rOoytsC8j4JiEuZtJ7A2DWClxcEyFcr8ln1RNCCCHKObUDCjWO5ueDppF+VmXWi5FuekI4MBn8AMilCKxFLq6NEK4lgZMQQojmRdMgcSfMyua7h7fjVQjHktREn9LiJIQjN1MAANl6PRRkubYyQriYBE5CCCGal4wTUGZOmhCPCIqsboT5e9CmhacLKyZEw+NlUi1OOXo95EtmPdG8SeAkhBCieSke31TCmygAYtsHodPpXFAhIRouPzdfALIkcBJCAichhBDNTHK8w6852a0B6aYnREX83FWLU7ZeJ131RLMngZMQQojmJXkXZfOzJqWpgEkmvhWivAAP6aonRAkJnIQQQjQf1iJI2UOSsXQ2jgJzK1r6utMu2NuFFROiYQr08AeKk0PkS4uTaN4kcBJCCNF8nPkdivJI8PYrs9BATLtAGd8kRAWCvUu66kmLkxAunwBXCCGEqDfFiSESAltj7HsBNy0Em17P1dJNT4gKtfIOAFTgpOVlILcXRHMmgZMQQojm49ROAPZ6u/HZ1EisafdQcMFNJr4VohKh3mqOM4tOR0FBBh4uro8QriRd9YQQQjQfyfFYgN+LVJejvJxwWniZ6NTKx7X1EqKBauXrR0k2lazcc66tjBAuJoGTEEKI5qEgB878zmE3NyyaFXe9L5olkH5Rgej10gFJiIr4ebhhsqkOShfyLri4NkK4lnTVE0II0Tyk7gXNxn7/VngW2Nj+yFZgFJ/8lODqmgnRYBkNegw2ExZDEVmSHEI0c9LiJIQQonkoTgyx389xPFPfqBauqI0QjYZRUyObsgtzXFwTIVxLAichhBDNQ0lGPYPmsLhLqF9FpYUQxYx4ApBjzXVxTYRwLQmchBBCNA/J8WTrdBy3OHY3Msj4JiGcMurU5NC5EjiJZk4CJyGEEE1fTjpknuSAuzsaGm5I+nEhqstkUK2yZs0CmlZFaSGaLgmchBBCNH3J8QAkBIYDYDGHubI2QjQqJmNx4KQHCs2urYwQLiSBU1OXmQzHN6qfQgjRXJUkhvBWF4B5EjgJUW2exgAAsvR6KMhybWWEcCFJR96UxX8K3z8Bmg10ehj1FvR+wNW1EkKI+pe8E4AE8gGw5EeyJ3oAPSMCwGBwYcWEaPh83H2hEHL0esjPBD+58SCaJ2lxaqoyk0uDJlA/v58mLU9CiOZH0yB5F6cNBtKLzICePGtbNr35MfzwA3h4uLqGQjRofm6+AGSXBE5CNFMSODVV6b+VBk0lNCuc+d019RFCCFc5/wfkZ5LgqTKD6QpDQXMjtr0kiBCiOgLc/QHI0esgX7rqieZLAqemyGaDX9+reN23U2DvIlVGCCGag5LxTcWJIQrMbXAz6unext+VtRKi0WjhqVqcsqTFSTRzEjg1Rav/DkdXg86gxjaB+ukRADlp8M0j8P4gOLbOpdUUQoh6UTLxbXGXPFt+G65u5Y5HgB94e4NZsoQJ4UyQVwBQ3FWvQAIn0XxJcoimZvt82PqOen7rPGg7UHVTCWwPXoHw6zzY9Aak7YfPboUOQ+GGFyE02rX1FkKIupK8CxuQYM0GwJoXQd+uLSBXJvMUojpaeqlslDnS4iSaOWlxakoOrYAVT6nn1z8H3e8E/3Bod636afKEa6bD43sgdhLoTXBsLcy7Fr6ZBJmnXFp9IYQLNdWpC4oKIXUfx01GzLZCsLlhK2hFv6hAV9dMiEajlXcLAMx6PdY8CZxE8yWBU1ORHA9LH1IJIXo/ANc+WXlZ7yAY8TJM3Q5X3QposHch/KcPrHlB7iYJ0dzEfwpzusEno9TP+E9dXaPak34ArAXs91EXfkX5YRj1RnpEBLi2XkI0IqF+AfbnOXnnXFcRIVxMAqem4MIJWHgXWHJV17ub3gCdDoA0cxrbU7eTZk4r/7rA9nDHx/DwWogcAEX5sPlNeKsnbJun7tQKIZq2jCT47vGmO3VByfimgFAAbHmRdG/jj5eb9FQXorqCvLww2NQl44VcCZxE8yWBU2OXdwG+uAPM6RDSTQVCBhMAy44sI25pHBN+mkDc13EsO7Ks4m206Qvjf4SxX0LwFZB3HlY+DXNj4MA3ag4U0bw11W5czZm1CPZ+BR+NAC46xjWrGhvZFJwqzqhnUl931rw2xLSTNORC1ISHyYDRpq4tMqVXimjGJHBqzIoK4Kv74ewh8A2DexaDhxrAmWZO44UtL2BD3UW2aTZe3PpixS1PoFqouoyESVvhT3PAuxVcOA5LHoQPhsGJLfXzN4mGpz66cUlgVn+KCmDXx/BOH/jmz5CZVHG5gMh6rVadSd5FgQ4OF6mLPWteBLHtZXyTEDVl1NwByCqQeZxE8yV9FRorTYPvHoPETeDmC/cuUQkgiv2S8gvaRXeRbZqNFcdXML7b+Mq3azBC3/EQfYfKzvfL25C8U92V7nwTDHsBWl5RR3+UaDCsFjidAEfWwPp/lS7XbOr/7vfvwbslmLzAzdvxYSp57gVuPmXK+KhlRg97V1JABWLfP6G2rdPDqLfUOD1Ruwpz1Wf9y1uQnaKWeQVB/ylq36x8VrU0ldg4G25+x3FfNTb5mXD2MAfd3SjSbNiKfNBZA+jbtgVoRTB4sCqnl3uIQlTFqHkAWeQUSTZKUQsyk+H8MQjs4HD92tBJ4NRYrf837PtKzdV05ycQ2s2+Kj03nbm751b4sjd2vcGvqb8yvc90Ogd2rnz77j4w5BnoMx42zFIXXId+gMMroc84GPwM+IbU9l8lXCUzWQXIp3bAqZ2QsluNeavMkZ8u/b10+tLgyugGGSdL15WMr+kwtFGdSBu0/CzY+SFseQdyz6plvq1hwOPqWHbzVsu6/El1z7uQCN8/Drs/B59QGPp3l1X9sqXsAbQy45vacFVYAL4eJsAEGza4sHJCNC4GnRcAudZ6CJwa6UW1qKZGfMNUAqfGKP4z2Piqej7qLeg41L7KbDEzZe0UzuSdIcgjiAsFF7BpNvQ6PTGhMew8vZNfUn5hS8oWRnUYxWO9HiPUO7Ty9/INgVFz4OpJsOZFFTztXKDGRgx8HK4aoybVrauTm5w8a19hLqTuLQ6SigOlkhaIsjwCVECe+AsOY2B0ehjyN9U6WZgLhWawmNXPsg9LLhTmlJYpylOv12xQmK0eFdGsKtlJ9zug03Bo2aVxt3q4Su55NW/br/NKM2UGtFVTEvS8B4zujuX9w0unL9BsKnja9Br4tILYR+q//rWhODHEft9AsJ7Hmh9BTBfppifEpTDpfQAwawV1+0aN+KJaOFFUACe3wW/fquvIEo3shqkETo3N0bXqhAIw6K/Q+377qiJbEX/5+S8cPH+QQI9APhv5GSa9iaTsJCJ8Iwj1DiUpK4m3dr/FqsRVfHfsO1YlruK+K+9jQvQEfN18K3/flp3h7oXqInr139UFyYZZ6gGADrqNgcj+KjmF3lT801DmuUldbOtNoDeWPndYV2bZ/qUqSYWcPJ1zFlxqmmpFsAdJOyAtwbFLFqiWy5CroE2/4kdftT29vvhLbJp6jc6gAulL2Q82a3EwVSa4yjihxuldnJzg9H5YvR9WPw9+baDTDerRbrBqDRWVyz6tutnuXKACV1BJX679C3S7XR1nVekzDnJOq5btFU+rbpndxtRtvetCSUY9vRWsxeOb2kngJMSlMBnUGGozVpV11+hW+2+SmayyfJZ8J2g29XtBNrTuqcZe+oWpawvRsGkanDuqrluPrYXEzeoaoMKyxQmJGkHgpNO05pUyLSsrC39/fzIzM/Hz83N1dWombT8sGKHu1He/C259z34nXtM0/rHtHyw9vBQPgwcL4hYQ3TK60k3tO7OP13e+Tnx6PAAB7gE82uNR7rziTkzFWfkqpWnqouyHGbX2p1WLTg/TEhrFgeWgLlvNLr4zFzcLgjupVqRTO1T3u7wL5V/nEwoR/SC8rwqUwnqWdtmq9G/4Q6Wwr5O/YVppYHbd/6ng6MhqNYavbJdBg5sKzjsNV4FU8BXSGlUiIwm2vK0+z5LPLCQaBj0JV46q8kIjzZzGyayTRPpFqlZoTYMfn4QdH6jP/b6vod2gevhDatHrV5JpTuOatm0AyD70PLv/7xZaeLuB2QxRUapcYiJ4O/n/F0IweuHTHLP8yP2ZWTw1YRd4B9f+m6x4WrWSO6M3gn8b1YIeEAkt2hY/L/7dJ6TqcYvSm6Vu5GXA8Z/h2Do4ug4yTzqu9wmBiKvh9+9w7MligGn7XbYvahIbSODUWGQmq+x22SkQdS3ct8zhbs8H+z/grfi30KFjznVzuD7y+io3qWkaG5I28Gb8mxzPPA5AG582PNHnCeLaxqFzdkF6fKPKsnaxyAHgGaCSC9gsKuWxzQK2ouJlRaXrbNby5Up+r0zX0XDT63Vzwq4L1e1yoGmqGbsoDyz5Tn7mgyVP/cw5DRtfo1xrzcUM7hDWS7UitSkOlPzCG1bAUVlgVpir7lIdXa3GVV1IdHxdQCR0vEEFUu2udR78NVXnjsHmN2DvInV8gdrHg/6qPpdq7OdlR5bxwpYX0NDQ6/TM7D+TMZ3GqGN0yYPqS87NV01b0Lp73f49tSUrBd64kl88PXk0tCW2wiAizP9g5bTi4M9sBp/i1sucHAmchKjCvUtfYp/5S0Zn5/DPu9dAUIfa27jNCj89B9v+W8FKHUTEqu+8zFPOrxFAfecFRFwUWEVCQJT6eehHWD5NerPUBptVjYkuaVU6tdOxR0vJzc6OQ6HD9WraHJ2u9nqy1BIJnJxolIFTfpbKanc6AYI7w4RV4NnCvvrHP37k6U1PA/BMzDPce+W9Ndp8ka2Ib45+w9zdczmXrya2iw6O5i99/0KfkD4VvygzWaWmLpk0E2r3jkHGSXirh+P2S5i81ZirAVMdPocGp6LPCCCok7rAtQdBBcUtBLV0KPqEqpaBki53Id3qpktFfdM0FSQc+UkFUombwVpmkmaDO0QNLA2kgjqUBg1N8e7i6d9g0+twYFnp/1i7QXDtk+pnNQPjTac2MXntZIdlep2eVbetUi1Plnz4/DY4sVndLZzwE7SIquU/pg78vhy+upd54Z2Y61aAJbMnd7Z9mn/cUpxIRwInIWrk0f+9zS8Z8xlmzuXNW5ZAeO/a2XBBDiybqAIaUC3kB3+s+KLaZoXsVHWNcOGE+plxovT3rFMVXzc44+LWjkYnM1kFSUfXwh8bID/DcX1Qp+JAaaj6Tq7shmZd9mSpoZrEBjLGqaGzWmDJOBU0ebdSacfLBAs703by3C/PAXDflffVOGgCMOqN3HHFHdzU7iY+OfAJHx34iP1n9/Pgyge5LuI6pvWZRnv/9o4v8g9Xd2kuvmNQW//8AZHltx/zZzi5FVL3qEHr2+er4Cn2Ufv8VQ2C1QIHf1AJPCo6gZ874vz1OgOYPFXabpOnGsRv9ASTR5llHiqQOLiccokbJq6r9ZNQuW5crqDTQXBH9eg/WY2ROr5JBVJHVqsuAcfWqceqZ9XFfafh6vPc/l7jv7tYEvwV5sHuT4v3fbFOcapLXkRMtTcXfzqe9/e/zy/Jv5RbZ9NsJGUnqX1t8oCxX8BHIyH9AHw2RgVPDb3VN3knAAnePmApKB7fJBPfCnGpAtzV92y2Xg+1NZdTVopKBpS2T938unWeGk9Z2UW13qC66fm3gbYDym/PalHbLBtMlQ2usiqYK7ARja+pVyXfOX7hcP548ffrWjhz0LGcuz+0H1zaqlTdOQBLEhI1MhI4NWSaBsunq39Wkxfc85Vqci72R+YfPLH+CSw2C0Mjh/Jk3ycv6+28TF5M6jmJOzrfwX/3/JdlR5axPmk9G09t5LZOtzGp5ySCPctcLPV+QN1RqKs7BhVtX9NUULL+JXURt/7fsO1duGYa9Juo5glylezTamLRXR+pO2IV0enh1vdVN4KyQVDZn1WNMSuroubuWt4PSw4t4Z/b/qm6caHnqX5PcWfnaoyFq4FLCszcvKHzjeqhaXD2cGkQdWKL6ta3/X3H12g21XWy/ZDGNcHrzo/gh+nq77TTQdebVdKH1j2qtRlN09iaupX5++az87QKLPTo7RNll2XUlfl68AxQY5w+HK6+SL+4A8Z937ATdSTvQgP22VQ2R2teBDGSGEKISxbgWRI46UozdV6O1H0qaMpOAa9guHuRGnsLl35RbTCp66Qy10oOzifCf3pd1FtGr64xhEr6cSFR3ZjeMZ8Ke8Lo9BDeR12fdRwKYb2rl3ToIg3ihuwlkK56DdnG12DdP9U/6diF0HmEfdW5vHPc++O9JOck0z24Ox/EfYCn0bNW3/6PjD+YEz+H9UnrAfA0ejL+qvGMu2ocXiYXBigANhv89g2sn1XaguPdSl1E9nlQ3SWvD5qm0mvumA+/fVfa99q7paqHux+seaFu+/HWYnO3pmmkmdPYe3Yv+87sY1faLn47/1uFZY16I55GT7yMXniZvOzPPY2eFf5e2bpfUn7h3T3vYsPmOL7mchRkq3F48Z/A4VXl15u8VXe2doPU2KhWVzWsSVDzs+DUdjj5q+oKcWr7RQV0MO67aidrKBnPOH//fPaf3Q+o/XdLh1uY0G0CO07v4MWtL2IrczER6RvJpyM+JcizTCvN2SMqeMo7r740717UMLuB2mzwciQptlziIsLRND0tz73G+r/cUFpGuuoJUSPv/7qW/xycRoTFwo+9/3Z532WHVsLSh9RUFsGd4d7F9dcFuOwNR1A34SZva1w30y6HpqlWuXNHyz8unCifdbdEt9tUN8p2g8Hr8m5CLTuyzP6dU2vf+5dBxjg50WgCp31LYNnD6vnI1yBmon1VXlEeE1ZNYP/Z/bTxacPnIz93vLipZTvTdvLGrjfsF1zBnsFM7jmZWzveytm8s669Y2Atgv2LYcPLqikeVLPyoL9Cr/tq1npTE4Vm2L9E3ZU5nVC6PCJWtXx1vbl0npwG1I/3YrmWXA6cO8C+M/vYf3Y/+87s40zeGZfWSYeOL2/6kquCr7r8jVU2zuxinoEQdU1pMFXf2foykyFpmwrCT26F0weqrvO45Sroc8Jqs7L6xGre3/8+Ry6oGwweBg9uv+J2xl01zuGYTTOnkZSdhJfRixkbZpBiTuGqoKtYELfA8UbJqZ0qMYwlV2X3HD2vYQWdAGcOwdwYVvkF8GSQH9a8cG5p9SqzxpTJNCqBkxA18k3CLp7f9SAtrFY2dpmsuspfim3zVHdqzaZa/+/4RLVql1HnrRGZyZD+O6x+Tv0MiVbjxxtLgqHqjNvNy1Djgs8duShAOlZ5WnAAgwdY88svr8Z3TnWk5qQS93UcWpnWLIdxtS4ggZMTjSJwStwMn92qBr73nwpx/7avstqszNgwg3VJ6/B39+fzEZ8T5R9V51XSNI2fTvzEW/FvkZSdBKgA6lzeufKZuGpRtU+eVgvs/lyNKyrpwxzQFoY8A9F3XlIzcoXOHVPpmXd/AQXFXRWMnmqy1n4TG3TGMZtmIzErUQVJZ/az7+w+jlw4gvWiu0tGnZErAq8gOjiaKL8oZu+YXe4Et3TUUnzdfMktyiXPkqd+FuWV/92ifpZ9XnZdRkGGPSHJxTq36My1ba7lmvBr6NGyB0b9Je7Di7sz/ukNCO2uWqQSN8GJrequZ1k+IaWBVNS1KuitrUDKZoMzvxcHScWPi1O2grr7GtlfTQC89sUaJWKx2Cz88McPfLj/QxKzEgHwNnkztvNY7u96f5U3Wo5nHueBFQ+QUZDBgLABvHP9O45dM4+sVl1sNCsMeAyG/6uGH0Id27MQvp3E62278rE+h8ILV/PK4BcY3avM55WXB4OKW+w2bgTP2m2xF6Kp2Xz8KJM23opR04iPGItu6HM124C1SAVMJV2oe49TWXIvusFZaZbPupB5Ct4fAuYzKmvvHR83rIyzFbk4W+/gZyHkytLA6Gzxz9yzlW9Db1TfMUEdix8dVFKHoI7qvD4nulaTf2XkZ7AtbRtbkrewIWkDFwrKT5OyIG4B/UL7XdL2L5cETk40+MDpzCH48AbVf7jrLXD7xw53c1/Z/gqf//45bno35g+fT++QWspqU00Wq4XFhxfz3z3/Jauw/ODQroFd8TJ5YdQb1UNnLH1e5mHQGTDpTY7LdUYM+tLl+8/s58fjP9rH1swcUI2TpyVfjTPa9DqY09WyoE4qgLpqzKXdGbdZ1diZ7fPVwMgSLdpBv4eh170uze5XWXCZWZDp0JK07+w+sguzy70+xCuE7i270z24O91bdufKoCsdun3WZZN6mjmNuK/jHLqIVcTXzZf+rfvbAymHsXbV4azVz2qB5HhI3KiSTST96jh3FKhJeNtdq4KodteW79Lh7O6fJU9tv6RFKenX8uMDdHoVzEX2h8ir1cO3zI2CaqZuLbAW8O2Rb1mQsIAUcwoA/u7+3HvlvdzT5R783f2r/ZHtO7OPh396mLyiPG5qfxMvXfMSel2Z42fPl/Dto+r58H9f+t3nuvDDX2DHB4y7oifxlvPkpdzOxklPERYgwZEQl+ro2XPc+sMQAH5tORyvka9X/8UF2bBkvMqIig5ueBEGPF4uSDmVdYoR34wo9/I+IX1o59+OcJ9wwn3CCfMJI9wnnCCPIOdTp1THia2qFd1mgeufUz1WGqrq9qIo4du6fGAU1FGNAXPWI+cy04UX2YrYf3Y/vyT/wpaULSScTXC4AXsxaXFqwBp04JSTDh8MVZlf2sSoMQym0i/6z3/7nFd2vALAq4Ne5cZ2N7qqpmxI2sBj6x6r1/fUoeOHW38gwi+i6sKFuWrc0eY5ajwGqHEs1/0NutxUvTtKuefVyWPnh2qfFNeCTsNV18kOQ6sViNVll4OyQY0OHSPbjcSgN7DvzD57S0NZHgYPugZ1VYFSy+5EB0dXq04l3bgifCPq9G8oCcyGRAxhS8oWNp3axJaULWQUZDi85srAK7km/BoGtRlEdHA0htqcRd6SrzKyHS8OpE7tKD9vSIuo4iBqMOSkwernS+/+Df+3Wn9yqwqUUnaXf73JWw2Cjuyvune26Qvuvs7r5ST4y7XksuTwEj458Im9q2WQRxAPXvUgd3S+A2/TpXU/2XRqE4+ve5wirYhxXcfxZL+LEtBsngNrZqrnY+ZD9zsv6X1q3ftDKErZzdXt21OgFeF79lm2/OUeV9dKiEYtK6+Qa77qg6aDn7z60vqOj6r3wsxTqoX6dILqoTHmfdWd/eJiBZlMWDWBQxcOVbtOHgYPwnzC7IHUxQ9/d/8KA6ty38u7PlatOABjv4QuI6tdh3pV2RyaQR3VfI1BnYqDpOJgqarvFWdqOMwgOSfZHij9mvorOZYch/UdAzoyIGwAA8MGkpSdxEvbX5IxTo1Bgw2cCs3w8U3qIiuwPUxYA96l3WnWnljL9A3T0dCY3mc6D3V7yIWVrbilQIeOmVfPxNvdmyJbkcPDqlkpshVhsVnKLato+WnzaXac3lHufYM8gni89+OM6jAKk74a45fys9Qs5FveKe1a17qnuqvUcVjFAVRyvGpdSvgarAVqmWcLNWaq7wQIbFftz2nZkWW8uOVFlfgAPVN7TWVQm0EUWAtKH0UF5FvzKbAWkF9U/NOaT0FRgcPzkjIly3MsORzNOOr0/aP8oogOjrYHSp1adKre51bPnAVmVpuVhHMJbDq1ic3Jmzlw7oDDej83PwaGDeSaNtcwMGxg7Y/3K8xVrUXHN6mufcnxlQ+erYxPiGNrUkh0rXQfzSrM4svfv+Tz3z+3B5eh3qE81O0hbu14Kx7Gy0+S8t2x7/i/zf8HwJN9n2TcVeNKV2oarPqbmrRSb4R7FqssS65kyYdZbThkgNvbtEazuhPnM5/X7+zl2noJ0cjZbBp9P+6DxWBhsa4DVz7wbdUvSo6HL8eqyWt9QuDuL1VGtouczDrJlLVTKrzhp0fP9D7TMReZSc5OJjlHPdJz0522YgB4Gb0I9w0n3Lu0lSopO4mvDn1VvivgD0+qG65uvvDwGmjVpZqfTD3a+l/V3bEsF81DlWvJZUfaDrakbGFLypZy+87f3Z/+rfszIGwAA8IGEOId4rC+Lm/I1pQETk40yMDJZoVF98LhFWqQ+sOOM3LvO7OPh1Y9RIG1gDuvuJPnrn7u8puma4Eru3BF+kbyaI9H7S0sVcq7oIKnbe+WjmeJiFUBVGAHNTj07GFIWArJu0pf17qHmj+q220OrX/VsS99H/etuK/KE3ttG9VhFCOiRhAdHE2AR0C9vnd9OJt31qE1qmyXUR06ugZ1tXfp6xbUDYPeULutfvlZqiUpcaOapPH8sfJl/CPUfBYlwVKLqMvuN1/2b3AzuPH5b5/z5cEv7Xf1In0jeTj6Yf7U/k+1mioeYEHCAt7c9SYAL13zEqM6lLnjabOpySsTlqqWtAeX197EmJfi1E74YChfB4Xwgp87ReYOvBjzH+7se1FLdW4udO2qnv/2G3i5OFOoEI1AzAex5Jly+aAwmNiJ650X/n05fP0wFOVBq67qxkpA+R4j8afjeWL9E2QUZNDauzWjO47mvX3vVXltYbFaSDWn2gOplJwUTuWcIiUnhZSclGonOrJ3E/MIUuPLEzeprvgT11129rhaFf8ZfPcYKkW4Tv2sq2y9lG+Vs2k2Dl84bG9Vik+Pp8hWZC9v0Bno0bKHPVDqGtS1dnuD1CEJnJxocIFT5ilY8bSazNLgruZGiYy1r07KSuK+FfdxPv88g9oM4q3r3rr0QfJ1oD67cP0t5m8UWAv4MOFDzuer7nft/dszpecUhrUd5jj+ojLms7D5TZXg4eJxLCUMbnDVrSrZQ5u+Nbrg1TSNbanbWHRwEeuT1lcYNPmafPF188XN4IaH0QN3gzseBg/cje4Ozz0Mal3Z52XL5xbl8n+b/69BZaapbyX9qEtao34//7vD+gD3ACJ8I+z9q2u9S0BF/c3r4O5f2WMBwKQ3YSnu/tcxoCMToycyPGp4nZ0bNE1j9o7ZfP775xh1Rt4Z+g4DwweWFigqhIV3qNTpXsFqgtwyN3/q1a/vwYqnmNk+mmVaJgVnh7DmwVeIDLooMJKsekLU2ID5g8l2O8+bZneGTd5ZcSFNg63vwE9/BzTVu+P2jyqcqP6HP37g77/8HYvNQregbvxn6H8I9gyulWuL/KJ8e2BVElTtP7PfPoddWfbEBOZzMH+I6p7f/jq4d2ntJZe6HDs/guXT1PN+E9XcleeP11m23ouHAUQHR5Ock1wumVO4T7i9+11M6xh83S6ja6ALSeDkRIMKnOI/he8exz7BWN+H4E9v2ldn5Gdw/4r7ScxK5MrAK/n4xo9dP39SPavo5JlryWXhwYV8lPCRvbWhS2AXpvScwuA2g6vXGpedpjKV7Vl40QodPLKxxtnxsguz+e7Ydyw6uKjCrgYlajuwaWhzIbjamdwzbE7ezKbkTWxL2Ua2pXwyDB06Xuj/AsOihuHnVgvngMscRFuVA2cPcPcPd5cLwq8IuILJvSZzXcR11btpcJlsmo1nNj3DiuMr8DR6siBuAd2Cu5UWKMhW3Y1T96qMlhNWg29I5RusK19PhP2LublDNMdtmbife4gd06eVPy9I4CREjQ2aP4ILbqf4Z6aN0Y8fKF/AaoEf/6omggfVvX3E7HLBh6ZpzNs7j//u/S8AwyKH8dK1L9X6fJQXq2yYwU+3/1T6vZyWoJJ0WXLh6ilw40t1WqcqbZ8PPxaPL42dBDfOqvXMf1mFWZzIPEFiViIJZxNYePDiayPF0+hJTGiMCpbCBxLpG9kgekBdLgmcnGgwgVNmMrx5FQ6zMpe5U11gLeDPP/2Z+PR4Wnu35ouRX9DSq6XLqtsQZRdm89lvn/Hpb59iLu5+Fx0czdReU+nfun/VB3NlgyxrMFfBkQtHWHRwEd//8T15RXmA6lN9c4ebGdtlLHvP7K3zwKYh9RNuSCw2C4t+X8TsnbMrXK/X6bky8EpiQmPoF9qPPiF9Lv3GRC3N1WXTbBzPPE58ejy7T+9md/puTuWcqrDsh8M/JKZ1zCW/16WwWC1MXjuZbanbaOHegs9GfkZbv7alBXLS1QS5F45DaDQ8+GOFd5nr1Nu9yb3wB/2jIrGhMdBtDvPurmDclQROQtTY9R/ezhnjIZ69kMs90y7qppyfCUsehGPrAB3EvQRXTyp3kV9oLWTmlpks/2M5AOO7jWda72n1cgMIyrfgA7w2+DXiouJKC/32P1hcfANs9LvQ00XJZbbNg5VPq+f9p6qpHy4xUCm0FpKUnURiZiKJWYmcyDrBiSwVLJX04nHmqX5PMbbz2FrvCt4QSODkRIMJnJxctNuiBvL0xqdZmbgSX5Mvn474lI4tOtZ/HRuJjPwMPj7wMQsPLrQHL31C+jC151T6hvat/IWX2M3KYrOw7uQ6Fh1c5NDk396/PWO7jGVU+1H4uPnYl0tg4zqV3V0M9wkvF5AYdUauCr6KmNAYYlrH0LNlz1pJruBMobWQA+cOEH86nt3pu9lzZg+ZJUlMytT34tYmV3bJNFvMPLTqIX479xvhPuF8PvJzx/Tw5/9QwZP5jJoH696lpZNB17Xc8zC7HfHu7owLC8Fm8eNv0Qu5N7Zt+bISOAlRY3EfjSdFv5PHz2cy8YnE0syyF06ozHlnfgeTF9z2YYWZ6S7kX2Da+mnEp8dj0Bl47urnuP2K2+v3j6D0e/mHP37g6yNf42n05NMRn9IlsExCiPUvwc+vqO7741eorvv1acs78JNKzMPAaTDsBXvQVNm4XZtmI82c5hgYFQdKqeZUp1N/tPJsRVv/trT0bMmK4yua1TAACZycaDCBk5OL9jePLmZBwgKMeiPzhs0jtnVs5dsRdmfzzvLh/g9ZfGgxhbZCAPq37s/UXlPp3rKSrnc16GZ1JvcMSw8vZenhpaTnqTmiDDoD10dez9jOY+kX2q9JNFk3NZV1ZzxtPs32tO3sSNvB9rTtJOckO7zOpDfRo2UPe4tU95bdcTO4XVZdMgsy2ZO+h/j0ePak7yHhbIL9f7WEp9GT6OBoerXqRe9Wvenesjs/nfipQXXJPJd3jvtX3E9SdhJdArvwUdxHDjcLSNmjuu0V5qjxgrctuLQ51Grq6Fr4fAwfh0bxuqcNS3ZXlt/5IR1b+ZQvK4GTEDU26vPpJFrXMCEjk2mPJKgW5VM7VeY88xk1b9DdiyCsZ7nXJmYmMnntZJKyk/A1+fL6kNfpH9a//v+IMopsRUxeM5mtqVsJ8w7jyz99SaBHcUIImw0W36/GoPuEwp83gF/r+qnY5jdhzQvq+aC/wnX/Zw+aLh5/dE34NXgYPUjMSuRk1kkKSrIBV8Db5E2UXxRt/doS5R9lf97Wr63DtBXNbRiABE5ONJjACSq8aF/s7cE/t/0TgH9f829u7lB+rgPhXJo5jQ/2f8DXR762Z3wZ3GYwU3pO4cqgK8u/wEk3K03TiE+PZ9HBRaw5sYYiTW0v0COQ26+4nTuuuKPJ3oFpSqrT6ncq+5Q9iNqetp303HSH9R4GD3q26kls61j6hfbjqqCr7MkYKrr7p2kayTnJ7E7fbQ+UKkofH+gRSO9WvVWgFNKbzoGdK0wZ39BaLssmrokNjeW/w/7rGFgeWw9f3KHmsIp9FG58udb75Zfz86uw/l883q4768nAkDGS3Y+/XPENDQmchKixOxe9wO8FX3NnVjZ/v3+TykL7zSMq2VJINNzzVYU9Nnak7WDa+mlkFWYR7hPO3KFz6RDgogQyF8ksyOSeH+7hZPZJ+ob05f3h75eegwuy4YMbVEtaeB/V/dhUtz0R2PgqrPuXej7kWRjyjH1VmjmNuKVx2Ki85cioNxLhG0Fbv7a082tnD4yi/KNqNGFwQ/vOqUsSODnRoAIncLho35T9B4+tewyrZmVyj8lM6jnJ1bVr1E5ln+K9fe/x3bHv7M3TN7S9gSk9p1R5ws615PLD8R9YdHARhy8cti/v2bInY7uM5Ya2N1x264NouDRN40TWCYcWqYv7gHsZvegT0gdPoyerT6xGQ0OHjhvb3YhNs7H79G57y2RZUX5R9A7pbW9RivCNaLQtlb+d+43xK8eTW5RLXFQcswfNdhynsH8pfD1BPR84HTper9L/19V8IwvHwuEVDGl3Jecw003/FF/ef3/FZXNzoV8/9XzHDklHLkQ1TFj2GtuzP2FEjpnZLQfBb9+oFZ3i4PYF4F6+dfe7Y98xc8tMimxFdG/Znbeue8uxe28DcCzjGPf+eC9mi5m7Ot/Fc1c/V7ry/HGYf52a1qTH3WrMU12cszVNdQ3cMEv9ft1zMPivDkW2JG/hkTWPlHvp2M5jubbNtbTza0drn9YNKvtyYyCBkxMNLnAq9vu53xm3chx5RXnc0uEW/jnwn432YqqhScxM5N2979r77OrQMbL9SCb1mERbv7YOrQUF1gIWHVzE/47+z56RzcPgwU3tb2Jsl7GO/Z9Fs6FpGscyjtlbo3ak7XCYP6oyRr2RrkFd7S1KPVv1LO0G0kRsTdnK5LWTKbIVcU+Xe3gm5hnHc9fFEzbq9DDqrdqfd0TTYHYHzhdcYHDbNgBMbfcljwzqVsULhRDV9coXj/J50S9ck5vHu6eL50mKfVQlgrhozh6bZmPunrm8v+99AOKi4vjXwH/V+djRS7UhaQOPr3scDY3n+z/PHVfcUbryjw3w2RjVQ2j4v2HA1Np9c02D9f9WrU2gxjNdM92hSKG1kClrprAtbZvD8qY+/qg+SODkREMMnFJzUrn3x3s5k3eG2NaxvDv03SaZtcTVjlw4wn/3/Jc1J9cApZO17U7fXeF8SxG+EdzV+S5GdxyNv7t/fVdXNGAlEwEuObSExYcXl1s/puMYRnUYRbfgbg32IqE2rTi+gqc2PgXAE72f4OHoh0tXVpRBFNR8T+6+aiC5m5eaYNrkXfyzgmVuXmq5/XHRsj1fwM+vsNHTgymhrfAu8OajUT9xZeuGcZ4XotHLTGbNe32ZHhJMj/wCPk89Dehg+oFyrcgF1gKe2/wcKxNXAjAxeiJTe02tt8x5l2r+vvm8vfttjDojH8R9QJ+QPqUrSzLc6fQq6U3HCrJ1XgpNU9OjbC6ejmb4v2DAYw5FCqwFTF8/nU3JmzDqjNg0Gzaax/ij+lCT2EDa8lzsWMYxJq+ZzJm8M3QM6MibQ96UoKmOdGrRiTeve5Pfzv3G3D1z2XhqI/Hp8eXKxYbG8mC3BxkQNqDBn+SFa+h1eroEdmFi94ksPbLUIVORXqdnUs9Jzeru34h2IziXd45XdrzCW/FvEeQRxK2dblUrzx+jXNAEkHtWPWrZfneVwe/6wnQ6e2YBEjgJUSvOH8PXZgUgR1/Sqqyp4QZlAqfz+ed5fN3j7D2zF6POyPP9ny89HzRwD0c/zOELh1mZuJIZG2aw6KZFtPYpTggR+wic3g+7P4el42Hi+suf6FvT4Kfn1ITBoMaCXu04TCO/KJ9p66fxS8oveBg8ePv6t2nn367ZjD9qaCRwcqElh5bwj23/sP9+c4ebG+2sy41J16CuzB06l4W/L2TW9lnl1j/S4xE1g7gQVQj1DmVm/5nlsg81xy+y+7rex5m8MyxIWMCLW18k0COQwRGD1Zgmnf6iDKLFd2zdfNQkk5ZcsORBoVn9rHBZ8c/CXMf1llzIz4bi7IT73dXYw+4FBegvHIeANhVXWMY4CVEzgR3wKT6Ms0uyZOoMKrFSsT8y/mDy2skk5yTj6+bLnCFz6n2+ucuh0+l4ccCLJGYlcvD8QZ5Y/wSfjPhETcyr08FNb8CZw3BqO3x5Nzy85tLnqtM0WPks/Pqu+n3kaxAz0aFIXlEej697nG2p2/A0ejJ36Fz79Ulz/J5pCKSrnoukmdO4YekNDsukn2r9qmiOH9kH4lI0p+xDzmiaxnO/PMd3x77Dw+DB/OHz6dmqZ43S/l+S4ukdNM3GtZHhZBoMLEw+TfSU3ZUnopCsekLU2PZVs5mQ9hmeNhvbT6Y6HMvbUrcxY/0Msi3ZRPhGMHfoXNr5t3NthS9Rak4qY38Yy/n889wYdSOzB80uHbuZfRreHwLZKXDFjTD2y5pPt2CzwYqnYMd89fuf3oS+DzkUybXkMnXdVHak7cDT6Mm7w9517Dooak1NYgPph+QiJ7NOlltm02wkZSe5oDbNU0lrQUl3vObcWiAuT6h3KP1C+zX7/x2dTscLA17g2vBrybfmM3XdVP7I+ENdWE3bD+OWq5+1nRjCPxxGvUWSyY1MgwGTpuEdM7PusvcJ0Ux5RN8HQJ5ej+Xx3fZjedmRZUxaPYlsSza9WvXii5FfNNqgCaC1T2veGPIGRp2RlYkr+TDhw9KVviEw9gswesDhlbD+XzXbuM0GP8woDpp0cPN/ygVNZouZSWsmsSNtB94mb96/4X0JmhoICZxcJNIvstz4Gb1OT4RvhItq1DyN6TSGVbetYkHcAlbdtkoGWApxmUx6E68Nfo3uwd3JLMjkkTWPcNp8WgUx7a6tu2Cm9wOsvk51vdUKwom8TqZzEKK2hfoG2J9nuvti02y8uetNlW5cK2Jku5HMHz6fFh4tXFfJWtInpA/PxqqMoG/Hv82GpA2lK8N7q4AHYNPrkPB19TZqs8H3j8OujwAdjP5vuRtJOYU5PLr6UeLT4/Ex+fD+De+rlnvRIDSIwGnu3LlERUXh4eFBbGws27dvd1p+yZIldOnSBQ8PD6Kjo/nxxx/rqaa1R1o7Gg5pLRCidnmZvHhn6DtE+UWRZk7j0TWPklmQWefvuzH9OAAt3K7EaGgQX29CNCktvDzQbGoc4YnMVJ78+UkWJCwAYFKPSbx87cu4G9xdWcVadWfnO7mr811oaDyz6RnVgl6i+50w4HH1/NspkLrX+cZsVvjfFNj9mRrnOeZ96HmPQ5HswmweWf0Ie87swdfNl/nD59O9Zfda/qvE5XD5N8tXX33FjBkzmDlzJvHx8fTo0YO4uDjS08tPHAmwZcsW7r77biZMmMDu3bsZPXo0o0ePJiEhoZ5rfvmktUMI0VS18GjBeze8R0vPlhzNOMqjqx9l86nNpJnT6uw9j2T+BkD3ljJ3kxB1wWTQg00FRjN+nsrqE6sx6U28dM1LTO45uUnOP/l0zNP0CemD2WLmsXWPOd4EGvYCdBwGRXnw5T2Qc6bijViL4JtHYe9CNc7ztg9U4FVGZkEmE3+ayL6z+/B39+eD4R/QLVjOZQ2Ny5NDxMbG0q9fP955R6VitNlsRERE8Nhjj/HMM8+UK3/XXXdhNptZvny5fdnVV19Nz549mTdvXpXv11CSQ5RIzczj+Fkz7YK9ae3vKduv5+3Xx3s09u3Xx3vI9l3/HnW1/UPnD3Hvj/dSYC0AQIeOu7vczfWR1+Np9MTD6IGn0dP+8DB4YLhoIs3qKLQW0ufTGNBbmdz5NSZdHef8BZIcQogaW3ZkGTN/mQnF8VFdJS1oaOe78/nnuXv53aSYUxgQNoC5Q+di1Bcnps7LgA+GwrmjEDkAHvgfqWZr6fZ9TLBsIhxYBnoj3PYhXDXaYfsZ+Rn8efWf+f387wS4B/DB8A/oHNi51up/KRraPqhLjWYep8LCQnbt2sWzz5bOKq/X6xk2bBhbt26t8DVbt25lxowZDsvi4uL49ttva/bmZjMYKvhyNhjAw8OxXGX0evD0vLSyubnMWX2I93/+Aw11DrqlZxi927YAnQ6rR2lZQ36eSltZkXJl8+1pf+NPXOB/e1Ictt+jS3iFZSti9SxNz6svyEdncyxbdvv5bh6M6R1Ov6jACss6bNejOK0noC8sQGe1Vlgu/sQFFh04h6bToQPuiG5JvzaV/0Nb3T3smW30lkJ0RUVVlt2ReJ7vdyRisFod90EZNjd3tOL/laq2W7asrsjCnqPp5fZByfZtJjc0o9FeVm+xVL5dh7JF6C2F9s/o4u337NgKzWgqV7bi7ZpKy1qt6AsLypUpeQ+LwUCRwcSY3uHERPhXWLaEZjRiM7kVv4kNQ0F+pWV3JGezZF86GqDXbNx1VXC5fWDfrsGAza24G4imqWOjsjoUl92ReJ5lu07hYSmodB9rej0299Lj3pCXW/l2Lyq792BypfsYnR6rR/W2W65smeP+4v18c68wenYOr7Bs+e1Wfo4oUdmxfLnnCIBsyzn0ufngro55DY2l+z7nm72fV7rdQncTJr0nJr07XlY3PGwmjHoPTHo3TDoPTHp3THp3jDp3NE8fTAYP9p3Zg8lqwWiBBXv/Qkr6Ef45dLzjhj09S7NfWSwQUTymNLeC/VK2bGGhKl8ZD4/S75OalLVYVPnKuLtD8XFfo7JFRVBQ+fGJmxuYTDUva7VCfuXHMiaTKl/TsjYb5FV+LNeorNGoPgtQx0RF+/ZSytbk2qAeryOcHfcOKfZrUjYvT33OFzltPs0r65+3H8sAttxc9u7P54+DByvcdHXOEReX3ZF4nuXbj6O32So9Z1f3OqKisrv/OFvpOdvZdcTNvtP44sLf2H18M49//RyDIh61l/W74mWG/fIAbkd/Ydsb43go7XY0wEQRXwR/QnT+ZqwGE1t6vkZqRjd0P5d+XrlFmSxOepEzhScI1Ptxe+Q/2H3Uk92crPDaoOz52mI0cUvfSPpFBV7ydURFtidns7T4e9los3JHt5aVfi9X5zqiRMm1wY7E83y78yRuRRb0Onjxlqu4vc9FY/zr8xzh7Lgr90e4UHJysgZoW7ZscVj+17/+VYuJianwNSaTSVu4cKHDsrlz52qtWrWqsHx+fr6WmZlpfyQlJWmAlqk+rvKPkSMdN+DlVXE50LTBgx3LBgdXXrZvX4eilojISsseCorU2j693P44FFR52SS/Vg5l94R2qrTsWU8/h7JbI7pVWtZscncou7Z938r/NnAou7zzQKdlu0xfai+7pNtQp2V7PfaFvewnvW5yWnbgox/ay86LGeO07LCH5trLvjnwbqdlRz3whr3sv4eMd1r2rrtfspd97oZHnZZ98PaZ9rJ/GTnNadlJtzxjLzvplmeclv3LyGn2sg/ePtNp2edueNRe9q67X3Ja9t9DxtvLjnrgDadl3xx4t73ssIfmOi07L2aMvezARz90WvaTXjfZy/Z67AunZZd0G2ov22X6Uqdll3ce6PA/7Kzs2vZ9HcqaTe6Vlt0a0c2h7FlPv0rL7gnt5FA2ya9VpWUb4zmi28fd7I9VfSv/HDTQ+r3X1V7224EBTste+3YXe9kvrw90WlY7frz0JPzkk87LJiSUlp3p/DjStm8vLTt7tvOy69eXln3nHedlly8vLfvRR87LLl5cWnbxYudlP/qotOxy5//v2jvvlJZdv9552dmzS8tu3+687MyZpWUTEpyXffLJ0rLHjzsvO3lyadn0dOdlx40rLZuT47zs7bc7fIc7LVtP1xFa27aVl+3a1bFs166Vl23b1rFs38qP5XO+BodjeXvnyv+2pn4dceMTU6p9HVEwwU976NkX5TqiBtcR9XmOyAQN0DIzM7WqNPkJcGfNmsWLL77o6mqUU2TTKm3u83Y3MOzKEIffK+Nhcizr5+l8l/aObEGgt4rKW3i5VVrOoNM5bDfYp3qDPXtHtiDE18Npmeu6tKLQXd01a73ZedmaGNghmHMtVZ3b7nU+mWX/DkH4BrQg/uSFKrcbExVIq/Zqu52OO5+guE9kID7Fn1vEced16NkmAENx2a5nnTcNR4f7U1hcNjrb32nZtoFe9n0XXRDgtGyXEF972c4EOi3r8LpQ5/VtH+xj326YX061t1uVNi087dv1yar8/xegtb8HvSOrt49DfD0c/t+dCfZxt5c9b3bSAoA6xspu181Y+bBSP0+jQ1kPk/PuamWP5do8R5Tdfl2cI0B9QznTnZfIQ4+NAvx5G9hUadlWDKagKJNcY+Mb5ypEo1Pu4K18TFNNzxHDrgzhvLmwWufsmlxHDOrUkhw/1VrScqvzOtTkOsKj1RquDh+ED+1pf9DHadnPfCeg6zySYdTsOqJLsvOyJXpHtqjV64iaqMl1RKdWvtX+Xm6oXDrGqbCwEC8vL5YuXcro0aPty8eNG0dGRgb/+9//yr0mMjKSGTNmMG3aNPuymTNn8u2337J3b/mMJgUFBRSU6YaQlZVFREQEmSkpFfdjrKcm9tTUcwx7bQO2Mp++QadjzV8GERrgddlN7GmZeQx9/edy21/9/IjSvqSVNMfble3zn5+vul4Uu3j7eW4eGHQ6Nj9zHa3ddQ5ly/HysjebU1CguopcpGT7ZqO7vayntYj10wcSWllf2Jp0rfH0JDW7gIEvr8NQZMFYXF/7Pij7HpfYDSf1bBbDZq2ueB/7e152N5xK9/Gzw2gd7OdQtlJVdMMp+x5FBgMWg0nt578OUvu5MtVsNk/LzGPwnM0U6Iub+TUb3kWW8vugRA274aTm2xj48jpsNg1Pi/ocKtzHl9gNJzUzj2H/+LHyfVwL3XAq2s96vY41fy9zLF9GNxynx7Ibl3yOKLv9uA/ewBq5HJ1OQ9N0kHQzayZMq/xYrsY5omzZfadPcM/Km3ErsmIsrq6m6Vhww2KiQ9qWlq3hOUK66iFd9UpIV70Kj2Vd0ihWT5he+bFcjXNE2bKpmXkMfHkdJksh+uI6VHjOruE5oqRsanoGw15ZW/k5uxrHvU2z8dTPT/FT+iZaeoew6E+LaGn0B4uF06eO0erja+xVA7BqOs4+uoOQtlfYt5uemczkNZM5mX2Slp4teXfYu0T6Rar1Ts4RF5+vC40mMBjV+drLWCvniLTMPAbN+YXC4jFcBpsVT2tR5d/LNTxHpOZZGfjyOrBacS9Sn2+F+7gezxFZWVn4h4VVa4xTg0gOERMTw3/+o/Lh22w2IiMjmTp1aqXJIXJzc/n+++/tywYMGED37t0bXXKIr3ac5G/LErBqGgadjpfGdOOufpGy/Xrafn28R2Pffn28h2zf9e9RH9v/v+82o5nOorME8++br6n1z+iZn+azPOU/9gu6P4U9xsvDJ1b+grw8GDRIPd+40fGCVAhRofo4lhvD+c5sMXPfj/dxNOMo3YO7s+DGBSoN+/GN8Mmo8i8Yt1zNYwekmdN4+KeHOZF1glDvUBYMX0CEX/Xn8JTvnNpXk9jA5YHTV199xbhx43jvvfeIiYlhzpw5LF68mIMHDxISEsIDDzxAeHg4s2apiQ23bNnC4MGDefnll7nppptYtGgRL730EvHx8XTrVnXaxoYUOIG6Y514NpeoYK86y1oi23ftezT27dfHe8j2Xf8ejX37APvSEolPPkrv8I50D41yXliy6glxSeR8pyRlJTH2h7FkFWZxS4db+OfAf6LLSoE53XBIqqMzwLT94B9Oak4qD616iFM5pwj3CeeD4R/QxreNS+rv6veoj7+huhpV4ATwzjvv8Oqrr5KWlkbPnj15++23iY2NBWDIkCFERUXx8ccf28svWbKE5557jsTERDp16sTs2bMZOXJktd6roQVOQgghXEACJyHEZdqaspVJayZh1aw81e8p7u96P8R/Ct9PA82qgqZRc6D3AyTnJDNh1QSSc5Jp49OGD+M+JMwnzNV/gqARBk71SQInIYQQEjgJIWrD5799zis7XkGv0zNv2Dz6h/WHzGQ4/wcEtgf/cJKyk5iwagKp5lQifSP5MO5DQr1DXV11UawmsUHlKZ6EEEIIIYQQlbr3ynu5pcMt2DQbT/78JCezToJ/uBrT5B/OiawTjF85nlRzKlF+USyIWyBBUyMmgZMQQgghhBCXQKfT8Xz/5+nesjtZhVk8vu5xzBaVHfF45nEeWvkQp3NP096/PQviFhDiXb2pL0TDJIGTEEIIIYQQl8jN4MacIXNo5dmKY5nHmL5+Ot8c+YZxK8eRnpdOx4COfBj3IS29Wrq6quIyyRgnIYQQzY/ZDFFR6nliooxxEkJctoSzCdz3431YtdL5qkK8Qlg8ajGBHtWfZF7Ur5rEBtWbQl4IIYRoSry94cwZV9dCCNGEBHsGYyubihw4k3eGQquTiWlFoyJd9YQQQgghhLhMJ7NOouHYkcum2UjKTnJRjURtk8BJCCGEEEKIyxTpF4le53hprdfpifCNcFGNRG2TwEkIIUTzk5cHQ4aoR16eq2sjhGgCQr1Dmdl/pj140uv0zOw/U9KPNyEyxkkIIUTzY7PBzz+XPhdCiFowptMYBoQNICk7iQjfCAmamhgJnIQQQgghhKglod6hEjA1UdJVTwghhBBCCCGqIIGTEEIIIYQQQlRBAichhBBCCCGEqIIETkIIIYQQQghRBUkOIYQQonny8nJ1DYQQQjQiEjgJIYRofry9wWx2dS2EEEI0ItJVTwghhBBCCCGqIIGTEEIIIYQQQlRBAichhBDNT34+3HSTeuTnu7o2QgghGgEZ4ySEEKL5sVrhxx9LnwshhBBVkBYnIYQQQgghhKiCBE5CCCGEEEIIUQUJnIQQQgghhBCiChI4CSGEEEIIIUQVJHASQgghhBBCiCo0u6x6mqYBkJWV5eKaCCGEcBmzufR5VpZk1hNCiGaqJCYoiRGcaXaBU3Z2NgAREREurokQQogGISzM1TUQQgjhYtnZ2fj7+zsto9OqE141ITabjZSUFHx9fdHpdK6uDllZWURERJCUlISfn5+rqyPqgOzjpk/2cfMg+7npk33cPMh+bvpqso81TSM7O5uwsDD0euejmJpdi5Ner6dNmzaurkY5fn5+cvA2cbKPmz7Zx82D7OemT/Zx8yD7uemr7j6uqqWphCSHEEIIIYQQQogqSOAkhBBCCCGEEFWQwMnF3N3dmTlzJu7u7q6uiqgjso+bPtnHzYPs56ZP9nHzIPu56aurfdzskkMIIYQQQgghRE1Ji5MQQgghhBBCVEECJyGEEEIIIYSoggROQgghhBBCCFEFCZyEEEIIIYQQogoSOLnQ3LlziYqKwsPDg9jYWLZv3+7qKola9MILL6DT6RweXbp0cXW1xGXYuHEjo0aNIiwsDJ1Ox7fffuuwXtM0nn/+eVq3bo2npyfDhg3jyJEjrqmsuGRV7ecHH3yw3LF94403uqay4pLMmjWLfv364evrS6tWrRg9ejSHDh1yKJOfn8+UKVMICgrCx8eH2267jdOnT7uoxqKmqrOPhwwZUu5YfvTRR11UY3Ep3n33Xbp3726f6LZ///6sWLHCvr62j2MJnFzkq6++YsaMGcycOZP4+Hh69OhBXFwc6enprq6aqEVXXXUVqamp9sfmzZtdXSVxGcxmMz169GDu3LkVrp89ezZvv/028+bN49dff8Xb25u4uDjy8/PruabiclS1nwFuvPFGh2P7yy+/rMcaisv1888/M2XKFLZt28bq1auxWCwMHz4cs9lsLzN9+nS+//57lixZws8//0xKSgpjxoxxYa1FTVRnHwNMnDjR4ViePXu2i2osLkWbNm14+eWX2bVrFzt37uT666/nlltu4cCBA0AdHMeacImYmBhtypQp9t+tVqsWFhamzZo1y4W1ErVp5syZWo8ePVxdDVFHAO2bb76x/26z2bTQ0FDt1VdftS/LyMjQ3N3dtS+//NIFNRS14eL9rGmaNm7cOO2WW25xSX1E3UhPT9cA7eeff9Y0TR27JpNJW7Jkib3M77//rgHa1q1bXVVNcRku3seapmmDBw/WnnjiCddVStSJFi1aaB988EGdHMfS4uQChYWF7Nq1i2HDhtmX6fV6hg0bxtatW11YM1Hbjhw5QlhYGO3bt+fee+/l5MmTrq6SqCPHjx8nLS3N4bj29/cnNjZWjusmaMOGDbRq1YrOnTszadIkzp075+oqicuQmZkJQGBgIAC7du3CYrE4HM9dunQhMjJSjudG6uJ9XOKLL74gODiYbt268eyzz5Kbm+uK6olaYLVaWbRoEWazmf79+9fJcWysrcqK6jt79ixWq5WQkBCH5SEhIRw8eNBFtRK1LTY2lo8//pjOnTuTmprKiy++yLXXXktCQgK+vr6urp6oZWlpaQAVHtcl60TTcOONNzJmzBjatWvHsWPH+Nvf/saIESPYunUrBoPB1dUTNWSz2Zg2bRoDBw6kW7dugDqe3dzcCAgIcCgrx3PjVNE+Brjnnnto27YtYWFh7Nu3j6effppDhw6xbNkyF9ZW1NT+/fvp378/+fn5+Pj48M0339C1a1f27NlT68exBE5C1JERI0bYn3fv3p3Y2Fjatm3L4sWLmTBhggtrJoS4HGPHjrU/j46Opnv37nTo0IENGzYwdOhQF9ZMXIopU6aQkJAgY1CbsMr28Z///Gf78+joaFq3bs3QoUM5duwYHTp0qO9qikvUuXNn9uzZQ2ZmJkuXLmXcuHH8/PPPdfJe0lXPBYKDgzEYDOWyepw+fZrQ0FAX1UrUtYCAAK644gqOHj3q6qqIOlBy7Mpx3fy0b9+e4OBgObYboalTp7J8+XLWr19PmzZt7MtDQ0MpLCwkIyPDobwcz41PZfu4IrGxsQByLDcybm5udOzYkT59+jBr1ix69OjBW2+9VSfHsQROLuDm5kafPn1Yu3atfZnNZmPt2rX079/fhTUTdSknJ4djx47RunVrV1dF1IF27doRGhrqcFxnZWXx66+/ynHdxJ06dYpz587Jsd2IaJrG1KlT+eabb1i3bh3t2rVzWN+nTx9MJpPD8Xzo0CFOnjwpx3MjUdU+rsiePXsA5Fhu5Gw2GwUFBXVyHEtXPReZMWMG48aNo2/fvsTExDBnzhzMZjPjx493ddVELXnyyScZNWoUbdu2JSUlhZkzZ2IwGLj77rtdXTVxiXJychzuRB4/fpw9e/YQGBhIZGQk06ZN41//+hedOnWiXbt2/P3vfycsLIzRo0e7rtKixpzt58DAQF588UVuu+02QkNDOXbsGE899RQdO3YkLi7OhbUWNTFlyhQWLlzI//73P3x9fe3jHfz9/fH09MTf358JEyYwY8YMAgMD8fPz47HHHqN///5cffXVLq69qI6q9vGxY8dYuHAhI0eOJCgoiH379jF9+nQGDRpE9+7dXVx7UV3PPvssI0aMIDIykuzsbBYuXMiGDRtYtWpV3RzHtZP4T1yK//znP1pkZKTm5uamxcTEaNu2bXN1lUQtuuuuu7TWrVtrbm5uWnh4uHbXXXdpR48edXW1xGVYv369BpR7jBs3TtM0lZL873//uxYSEqK5u7trQ4cO1Q4dOuTaSosac7afc3NzteHDh2stW7bUTCaT1rZtW23ixIlaWlqaq6staqCi/QtoH330kb1MXl6eNnnyZK1Fixaal5eXduutt2qpqamuq7Sokar28cmTJ7VBgwZpgYGBmru7u9axY0ftr3/9q5aZmenaiosaeeihh7S2bdtqbm5uWsuWLbWhQ4dqP/30k319bR/HOk3TtEuN8oQQQgghhBCiOZAxTkIIIYQQQghRBQmchBBCCCGEEKIKEjgJIYQQQgghRBUkcBJCCCGEEEKIKkjgJIQQQgghhBBVkMBJCCGEEEIIIaoggZMQQgghhBBCVEECJyGEEE3Wgw8+yOjRo11dDSGEEE2A0dUVEEIIIS6FTqdzun7mzJm89dZbyDzvQgghaoMETkIIIRql1NRU+/OvvvqK559/nkOHDtmX+fj44OPj44qqCSGEaIKkq54QQohGKTQ01P7w9/dHp9M5LPPx8SnXVW/IkCE89thjTJs2jRYtWhASEsL8+fMxm82MHz8eX19fOnbsyIoVKxzeKyEhgREjRuDj40NISAj3338/Z8+eree/WAghhCtJ4CSEEKJZ+eSTTwgODmb79u089thjTJo0iTvuuIMBAwYQHx/P8OHDuf/++8nNzQUgIyOD66+/nl69erFz505WrlzJ6dOnufPOO138lwghhKhPEjgJIYRoVnr06MFzzz1Hp06dePbZZ/Hw8CA4OJiJEyfSqVMnnn/+ec6dO8e+ffsAeOedd+jVqxcvvfQSXbp0oVevXixYsID169dz+PBhF/81Qggh6ouMcRJCCNGsdO/e3f7cYDAQFBREdHS0fVlISAgA6enpAOzdu5f169dXOF7q2LFjXHHFFXVcYyGEEA2BBE5CCCGaFZPJ5PC7TqdzWFaSrc9mswGQk5PDqFGjeOWVV8ptq3Xr1nVYUyGEEA2JBE5CCCGEE7179+brr78mKioKo1G+NoUQormSMU5CCCGEE1OmTOH8+fPcfffd7Nixg2PHjrFq1SrGjx+P1Wp1dfWEEELUEwmchBBCCCfCwsL45ZdfsFqtDB8+nOjoaKZNm0ZAQAB6vXyNCiFEc6HTZEp1IYQQQgghhHBKbpUJIYQQQgghRBUkcBJCCCGEEEKIKkjgJIQQQgghhBBVkMBJCCGEEEIIIaoggZMQQgghhBBCVEECJyGEEEIIIYSoggROQgghhBBCCFEFCZyEEEIIIYQQogoSOAkhhBBCCCFEFSRwEkIIIYQQQogqSOAkhBBCCCGEEFWQwEkIIYQQQgghqvD/NSXyW7IHttYAAAAASUVORK5CYII=",
+ "text/plain": [
+ "