From 4c820159af78f18b3e62e77dc279daf9c580aa70 Mon Sep 17 00:00:00 2001 From: Aleksandr Michuda Date: Wed, 12 Oct 2022 10:31:30 -0400 Subject: [PATCH] add linearmodels covariance class --- src/lineamodels_api.py | 56 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 56 insertions(+) create mode 100644 src/lineamodels_api.py diff --git a/src/lineamodels_api.py b/src/lineamodels_api.py new file mode 100644 index 0000000..48beb35 --- /dev/null +++ b/src/lineamodels_api.py @@ -0,0 +1,56 @@ +from functools import cached_property +from linearmodels.panel.covariance import HomoskedasticCovariance +from linearmodels.typing import Float64Array, IntArray +from typing import Union +from boot_algo3 import boot_algo3 + +class WildBootstrap(HomoskedasticCovariance): + + def __init__( + self, + y: Float64Array, + x: Float64Array, + params: Float64Array, + entity_ids: Union[IntArray, None], + time_ids: Union[IntArray, None], + *, + debiased: bool = False, + extra_df: int = 0, + ): + self._y = y + self._x = x + self._params = params + self._entity_ids = entity_ids + self._time_ids = time_ids + self._debiased = debiased + self._extra_df = extra_df + self._nobs, self._nvar = x.shape + self._nobs_eff = self._nobs - extra_df + if debiased: + self._nobs_eff -= self._nvar + self._scale = self._nobs / self._nobs_eff + self._name = "Wild Bootstrap" + + @property + def name(self) -> str: + """Covariance estimator name""" + return self._name + + @property + def eps(self) -> Float64Array: + """Model residuals""" + return self._y - self._x @ self._params + + @property + def s2(self) -> float: + """Error variance""" + eps = self.eps + return self._scale * float(eps.T @ eps) / self._nobs + + @cached_property + def cov(self) -> Float64Array: + # add in bootalgo code + + def deferred_cov(self) -> Float64Array: + """Covariance calculation deferred until executed""" + return self.cov \ No newline at end of file