forked from fmassa/object-detection.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRCNN.lua
128 lines (102 loc) · 3.71 KB
/
RCNN.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
local RCNN = torch.class('nnf.RCNN')
function RCNN:__init(dataset)
self.dataset = dataset
self.image_transformer = nnf.ImageTransformer{
mean_pix={123.68/255,116.779/255,103.939/255}}
self.crop_size = 227
self.image_mean = nil
self.padding = 16
self.use_square = false
end
function RCNN:getCrop(im_idx,bbox,flip)
-- suppose I is in BGR, as image_mean
-- [x1 y1 x2 y2] order
local flip = flip==nil and false or flip
if self.curr_im_idx ~= im_idx or self.curr_doflip ~= flip then
self.curr_im_idx = im_idx
self.curr_im_feats = self.dataset:getImage(im_idx):float()
self.curr_im_feats = self.image_transformer:preprocess(self.curr_im_feats)
if flip then
self.curr_im_feats = image.hflip(self.curr_im_feats)
end
self.curr_doflip = flip
end
local I = self.curr_im_feats
local bbox = bbox
if flip then
local tt = bbox[1]
bbox[1] = I:size(3)-bbox[3]+1
bbox[3] = I:size(3)-tt +1
end
local crop_size = self.crop_size
local image_mean = self.image_mean
local padding = self.padding
local use_square = self.use_square
local pad_w = 0;
local pad_h = 0;
local crop_width = crop_size;
local crop_height = crop_size;
--local bbox = {bbox[2],bbox[1],bbox[4],bbox[3]}
------
if padding > 0 or use_square then
local scale = crop_size/(crop_size - padding*2)
local half_height = (bbox[4]-bbox[2]+1)/2
local half_width = (bbox[3]-bbox[1]+1)/2
local center = {bbox[1]+half_width, bbox[2]+half_height}
if use_square then
-- make the box a tight square
if half_height > half_width then
half_width = half_height;
else
half_height = half_width;
end
end
bbox[1] = torch.round(center[1] - half_width * scale)
bbox[2] = torch.round(center[2] - half_height * scale)
bbox[3] = torch.round(center[1] + half_width * scale)
bbox[4] = torch.round(center[2] + half_height * scale)
local unclipped_height = bbox[4]-bbox[2]+1;
local unclipped_width = bbox[3]-bbox[1]+1;
local pad_x1 = math.max(0, 1 - bbox[1]);
local pad_y1 = math.max(0, 1 - bbox[2]);
-- clipped bbox
bbox[1] = math.max(1, bbox[1]);
bbox[2] = math.max(1, bbox[2]);
bbox[3] = math.min(I:size(3), bbox[3]);
bbox[4] = math.min(I:size(2), bbox[4]);
local clipped_height = bbox[4]-bbox[2]+1;
local clipped_width = bbox[3]-bbox[1]+1;
local scale_x = crop_size/unclipped_width;
local scale_y = crop_size/unclipped_height;
crop_width = torch.round(clipped_width*scale_x);
crop_height = torch.round(clipped_height*scale_y);
pad_x1 = torch.round(pad_x1*scale_x);
pad_y1 = torch.round(pad_y1*scale_y);
pad_h = pad_y1;
pad_w = pad_x1;
if pad_y1 + crop_height > crop_size then
crop_height = crop_size - pad_y1;
end
if pad_x1 + crop_width > crop_size then
crop_width = crop_size - pad_x1;
end
end -- padding > 0 || square
------
--local patch = image.crop(I,bbox[1],bbox[2],bbox[3],bbox[4]);
--local patch = image.crop(I,bbox[1],bbox[2],bbox[3],bbox[4]):float();
local patch = I[{{},{bbox[2],bbox[4]},{bbox[1],bbox[3]}}]:float()
local tmp = image.scale(patch,crop_width,crop_height,'bilinear');
if image_mean then
tmp = tmp - image_mean[{{},{pad_h+1,pad_h+crop_height},
{pad_w+1,pad_w+crop_width}}]
end
--patch = torch.zeros(3,crop_size,crop_size):typeAs(I)
patch = torch.zeros(3,crop_size,crop_size):float()
patch[{{},{pad_h+1,pad_h+crop_height}, {pad_w+1,pad_w+crop_width}}] = tmp
return patch
end
function RCNN:getFeature(im_idx,bbox,flip)
local flip = flip==nil and false or flip
local crop_feat = self:getCrop(im_idx,bbox,flip)
return crop_feat
end