forked from fmassa/object-detection.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPP.lua
272 lines (203 loc) · 6.96 KB
/
SPP.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
local hdf5 = require 'hdf5'
local SPP = torch.class('nnf.SPP')
--TODO vectorize code ?
function SPP:__init(dataset,model)
self.dataset = dataset
self.model = model
self.spp_pooler = inn.SpatialPyramidPooling({{1,1},{2,2},{3,3},{6,6}}):float()
self.image_transformer = nnf.ImageTransformer{}
-- paper=864, their code=874
self.scales = {480,576,688,874,1200} -- 874
self.randomscale = true
self.sz_conv_standard = 13
self.step_standard = 16
self.offset0 = 21
self.offset = 6.5
self.inputArea = 224^2
self.use_cache = true
self.cachedir = nil
end
function SPP:getCrop(im_idx,bbox,flip)
local flip = flip or false
if self.curr_im_idx ~= im_idx or self.curr_doflip ~= flip then
self.curr_im_idx = im_idx
self.curr_im_feats = self:getConv5(im_idx,flip)
self.curr_doflip = flip
end
local bbox = bbox
if flip then
local tt = bbox[1]
bbox[1] = self.curr_im_feats.imSize[3]-bbox[3]+1
bbox[3] = self.curr_im_feats.imSize[3]-tt +1
end
local bestScale,bestBbox = self:getBestSPPScale(bbox,self.curr_im_feats.imSize,self.curr_im_feats.scales)
local box_norm = self:getResposeBoxes(bestBbox)
local crop_feat = self:getCroppedFeat(self.curr_im_feats.rsp[bestScale],box_norm)
return crop_feat
end
function SPP:getFeature(im_idx,bbox,flip)
local flip = flip or false
local crop_feat = self:getCrop(im_idx,bbox,flip)
local feat = self.spp_pooler:forward(crop_feat)
return feat
end
local function cleaningForward(input,model)
local currentOutput = model.modules[1]:updateOutput(input)
for i=2,#model.modules do
collectgarbage()
collectgarbage()
currentOutput = model.modules[i]:updateOutput(currentOutput)
model.modules[i-1].output:resize()
model.modules[i-1].gradInput:resize()
if model.modules[i-1].gradWeight then
model.modules[i-1].gradWeight:resize()
end
if model.modules[i-1].gradBias then
model.modules[i-1].gradBias:resize()
end
end
model.output = currentOutput
return currentOutput
end
function SPP:getConv5(im_idx,flip)
local scales = self.scales
local flip = flip or false
local cachedir = self.cachedir
assert(cachedir or (not self.use_cache),
'Need to set a folder to save the conv5 features')
if not cachedir then
cachedir = ''
end
local cachefile = paths.concat(self.cachedir,self.dataset.img_ids[im_idx])
if flip then
cachefile = cachefile..'_flip'
end
local feats
if self.use_cache and paths.filep(cachefile..'.h5') then
local f = hdf5.open(cachefile..'.h5','r')
feats = f:read('/'):all()
f:close()
feats.scales = feats.scales:totable()
for i=1,#feats.scales do
feats.rsp[i] = feats.rsp[tostring(i)]
feats.rsp[tostring(i)] = nil
end
else
local I = self.dataset:getImage(im_idx):float()
I = self.image_transformer:preprocess(I)
if flip then
I = image.hflip(I)
end
local rows = I:size(2)
local cols = I:size(3)
feats = {}
feats.rsp = {}
local mtype = self.model.output:type()
-- compute conv5 feature maps at different scales
for i=1,#scales do
-- local Ir = image.scale(I,'^'..scales[i])
local sr = rows < cols and scales[i] or math.ceil(scales[i]*rows/cols)
local sc = rows > cols and scales[i] or math.ceil(scales[i]*cols/rows)
local Ir = image.scale(I,sc,sr):type(mtype)
local f = self.model:forward(Ir)
--local f = cleaningForward(Ir,self.model)
feats.rsp[i] = torch.FloatTensor(f:size()):copy(f)
end
collectgarbage()
collectgarbage()
feats.imSize = torch.FloatTensor(I:size():totable())
if self.use_cache then
paths.mkdir(paths.dirname(cachefile))
local f = hdf5.open(cachefile..'.h5','w')
local options = hdf5.DataSetOptions()
options:setChunked(128, 32, 32)
options:setDeflate()
feats.scales = torch.FloatTensor(scales)
for i,v in pairs(feats) do
if i == 'imSize' or i == 'scales' then
f:write('/'..i,v)
elseif i == 'rsp' then
for l,k in pairs(v) do
f:write('/rsp/'..l,k,options)
end
end
end
f:close()
end
feats.scales = scales
end
return feats
end
function SPP:getBestSPPScale(bbox,imSize,scales)
local scales = scales or self.scales
local num_scales = #scales
if torch.isTensor(num_scales) then
num_scales = num_scales[1]
end
local min_dim = math.min(imSize[2],imSize[3])
local sz_conv_standard = self.sz_conv_standard
local step_standard = self.step_standard
local bestScale
if self.randomscale then
bestScale = torch.random(1,num_scales)
else
local inputArea = self.inputArea
local bboxArea = (bbox[4]-bbox[2]+1)*(bbox[3]-bbox[1]+1)
local expected_scale = sz_conv_standard*step_standard*min_dim/math.sqrt(bboxArea)
expected_scale = torch.round(expected_scale)
local nbboxDiffArea = torch.Tensor(num_scales)
for i=1,#scales do
nbboxDiffArea[i] = math.abs(scales[i]-expected_scale)
end
bestScale = select(2,nbboxDiffArea:min(1))[1] -- index of minimum area
end
local mul_factor = (scales[bestScale]-1)/(min_dim-1)
local bestBbox = {((bbox[1]-1)*mul_factor+1),((bbox[2]-1)*mul_factor+1),
((bbox[3]-1)*mul_factor+1),((bbox[4]-1)*mul_factor+1)}
return bestScale,bestBbox
end
function SPP:getResposeBoxes(bbox)
-- [x1 y1 x2 y2] order
local offset0 = self.offset0
local offset = self.offset
local step_standard = self.step_standard
local y0_norm = math.floor((bbox[2]-offset0 + offset)/step_standard + 0.5) + 1
local x0_norm = math.floor((bbox[1]-offset0 + offset)/step_standard + 0.5) + 1
local y1_norm = math.ceil((bbox[4] -offset0 - offset)/step_standard - 0.5) + 1
local x1_norm = math.ceil((bbox[3] -offset0 - offset)/step_standard - 0.5) + 1
if x0_norm > x1_norm then
x0_norm = (x0_norm + x1_norm) / 2;
x1_norm = x0_norm;
end
if y0_norm > y1_norm then
y0_norm = (y0_norm + y1_norm) / 2;
y1_norm = y0_norm;
end
local box_norm = {x0_norm,y0_norm,x1_norm,y1_norm}
return box_norm
end
function SPP:getCroppedFeat(feat,bbox)
-- [x1 y1 x2 y2] order
local bbox_ = {}
bbox_[2] = math.min(feat:size(2), math.max(1, bbox[2]));
bbox_[4] = math.min(feat:size(2), math.max(1, bbox[4]));
bbox_[1] = math.min(feat:size(3), math.max(1, bbox[1]));
bbox_[3] = math.min(feat:size(3), math.max(1, bbox[3]));
--local bbox = {bbox_[2],bbox_[1],bbox_[4],bbox_[3]}
local patch = feat[{{},{bbox_[2],bbox_[4]},{bbox_[1],bbox_[3]}}]; -- attention car crop commence en 0 !
return patch
end
function SPP:type(t_type)
self._type = t_type
--self.spp_pooler = self.spp_pooler:type(t_type)
return self
end
function SPP:float()
return self:type('torch.FloatTensor')
end
function SPP:double()
return self:type('torch.DoubleTensor')
end
function SPP:cuda()
return self:type('torch.CudaTensor')
end