forked from fmassa/object-detection.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Trainer.lua
93 lines (64 loc) · 2.02 KB
/
Trainer.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
require 'nn'
require 'optim'
require 'xlua'
local Trainer = torch.class('nnf.Trainer')
function Trainer:__init(module,criterion)
self.module = module
self.criterion = criterion
self.parameters,self.gradParameters = self.module:getParameters()
self.optimState = {learningRate = 1e-3, weightDecay = 0.0005, momentum = 0.9,
learningRateDecay = 0}
self.epoch = 0
self.normalize = false
self.fx = {}
end
function Trainer:train(inputs,targets)
-- only for batches
assert(targets:dim()>2,'Trainer is only for batches')
self.module:training()
self._input = self._input or torch.CudaTensor()
self._target = self._target or torch.CudaTensor()
local module = self.module
local parameters = self.parameters
local gradParameters = self.gradParameters
local criterion = self.criterion
local optimState = self.optimState
local batchSize = inputs:size(2)
local maxIter = inputs:size(1)
if self.confusion then
self.confusion:zero()
end
local err = 0
self._input:resize(inputs[1]:size())
self._target:resize(targets[1]:size())
local input = self._input
local target = self._target
for t=1,maxIter do
xlua.progress(t,maxIter)
input:copy(inputs[t])
target:copy(targets[t])
local feval = function(x)
if x ~= parameters then
parameters:copy(x)
end
gradParameters:zero()
local outputs = module:forward(input)
local f = criterion:forward(outputs,target)
local df_do = criterion:backward(outputs,target)
module:backward(input,df_do)
if self.normalize then
gradParameters:div(batchSize)
f = f/batchSize
end
if self.confusion then
self.confusion:batchAdd(outputs,target)
end
return f,gradParameters
end
local x,fx = optim.sgd(feval,parameters,optimState)
err = err + fx[1]
end
table.insert(self.fx,err/maxIter)
self.module:evaluate()
self.epoch = self.epoch + 1
end