forked from fmassa/object-detection.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.lua
288 lines (242 loc) · 7.82 KB
/
utils.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
--------------------------------------------------------------------------------
-- utility functions for the evaluation part
--------------------------------------------------------------------------------
local function joinTable(input,dim)
local size = torch.LongStorage()
local is_ok = false
for i=1,#input do
local currentOutput = input[i]
if currentOutput:numel() > 0 then
if not is_ok then
size:resize(currentOutput:dim()):copy(currentOutput:size())
is_ok = true
else
size[dim] = size[dim] + currentOutput:size(dim)
end
end
end
local output = input[1].new():resize(size)
local offset = 1
for i=1,#input do
local currentOutput = input[i]
if currentOutput:numel() > 0 then
output:narrow(dim, offset,
currentOutput:size(dim)):copy(currentOutput)
offset = offset + currentOutput:size(dim)
end
end
return output
end
--------------------------------------------------------------------------------
local function keep_top_k(boxes,top_k)
local X = joinTable(boxes,1)
if X:numel() == 0 then
return
end
local scores = X[{{},-1}]:sort(1,true)
local thresh = scores[math.min(scores:numel(),top_k)]
for i=1,#boxes do
local bbox = boxes[i]
if bbox:numel() > 0 then
local idx = torch.range(1,bbox:size(1)):long()
local keep = bbox[{{},-1}]:ge(thresh)
idx = idx[keep]
if idx:numel() > 0 then
boxes[i] = bbox:index(1,idx)
else
boxes[i]:resize()
end
end
end
return boxes, thresh
end
--------------------------------------------------------------------------------
-- evaluation
--------------------------------------------------------------------------------
local function VOCap(rec,prec)
local mrec = rec:totable()
local mpre = prec:totable()
table.insert(mrec,1,0); table.insert(mrec,1)
table.insert(mpre,1,0); table.insert(mpre,0)
for i=#mpre-1,1,-1 do
mpre[i]=math.max(mpre[i],mpre[i+1])
end
local ap = 0
for i=1,#mpre-1 do
if mrec[i] ~= mrec[i+1] then
ap = ap + (mrec[i+1]-mrec[i])*mpre[i+1]
end
end
return ap
end
local function VOC2007ap(rec,prec)
local ap = 0
for t=0,1,0.1 do
local c = prec[rec:ge(t)]
local p
if c:numel() > 0 then
p = torch.max(c)
else
p = 0
end
ap=ap+p/11
end
return ap
end
--------------------------------------------------------------------------------
local function boxoverlap(a,b)
--local b = anno.objects[j]
local b = b.xmin and {b.xmin,b.ymin,b.xmax,b.ymax} or b
local x1 = a:select(2,1):clone()
x1[x1:lt(b[1])] = b[1]
local y1 = a:select(2,2):clone()
y1[y1:lt(b[2])] = b[2]
local x2 = a:select(2,3):clone()
x2[x2:gt(b[3])] = b[3]
local y2 = a:select(2,4):clone()
y2[y2:gt(b[4])] = b[4]
local w = x2-x1+1;
local h = y2-y1+1;
local inter = torch.cmul(w,h):float()
local aarea = torch.cmul((a:select(2,3)-a:select(2,1)+1) ,
(a:select(2,4)-a:select(2,2)+1)):float()
local barea = (b[3]-b[1]+1) * (b[4]-b[2]+1);
-- intersection over union overlap
local o = torch.cdiv(inter , (aarea+barea-inter))
-- set invalid entries to 0 overlap
o[w:lt(0)] = 0
o[h:lt(0)] = 0
return o
end
--------------------------------------------------------------------------------
local function VOCevaldet(dataset,scored_boxes,cls)
local num_pr = 0
local energy = {}
local correct = {}
local count = 0
for i=1,dataset:size() do
local ann = dataset:getAnnotation(i)
local bbox = {}
local det = {}
for idx,obj in ipairs(ann.object) do
if obj.name == cls and obj.difficult == '0' then
table.insert(bbox,{obj.bndbox.xmin,obj.bndbox.ymin,
obj.bndbox.xmax,obj.bndbox.ymax})
table.insert(det,0)
count = count + 1
end
end
bbox = torch.Tensor(bbox)
det = torch.Tensor(det)
local num = scored_boxes[i]:numel()>0 and scored_boxes[i]:size(1) or 0
for j=1,num do
local bbox_pred = scored_boxes[i][j]
num_pr = num_pr + 1
table.insert(energy,bbox_pred[5])
if bbox:numel()>0 then
local o = boxoverlap(bbox,bbox_pred[{{1,4}}])
local maxo,index = o:max(1)
maxo = maxo[1]
index = index[1]
if maxo >=0.5 and det[index] == 0 then
correct[num_pr] = 1
det[index] = 1
else
correct[num_pr] = 0
end
else
correct[num_pr] = 0
end
end
end
if #energy == 0 then
return 0,torch.Tensor(),torch.Tensor()
end
energy = torch.Tensor(energy)
correct = torch.Tensor(correct)
local threshold,index = energy:sort(true)
correct = correct:index(1,index)
local n = threshold:numel()
local recall = torch.zeros(n)
local precision = torch.zeros(n)
local num_correct = 0
for i = 1,n do
--compute precision
num_positive = i
num_correct = num_correct + correct[i]
if num_positive ~= 0 then
precision[i] = num_correct / num_positive;
else
precision[i] = 0;
end
--compute recall
recall[i] = num_correct / count
end
ap = VOCap(recall, precision)
io.write(('AP = %.4f\n'):format(ap));
return ap, recall, precision
end
--------------------------------------------------------------------------------
-- data preparation
--------------------------------------------------------------------------------
-- Caffe models are in BGR format, and they suppose the images range from 0-255.
-- This function modifies the model read by loadcaffe to use it in torch format
-- location is the postion of the first conv layer in the module. If you have
-- nested models (like sequential inside sequential), location should be a
-- table with as many elements as the depth of the network.
local function convertCaffeModelToTorch(model,location)
local location = location or {1}
local m = model
for i=1,#location do
m = m:get(location[i])
end
local weight = m.weight
local weight_clone = weight:clone()
local nchannels = weight:size(2)
for i=1,nchannels do
weight:select(2,i):copy(weight_clone:select(2,nchannels+1-i))
end
weight:mul(255)
end
--------------------------------------------------------------------------------
-- nn
--------------------------------------------------------------------------------
local function reshapeLastLinearLayer(model,nOutput)
local layers = model:findModules('nn.Linear')
local layer = layers[#layers]
local nInput = layer.weight:size(2)
layer.gradBias:resize(nOutput):zero()
layer.gradWeight:resize(nOutput,nInput):zero()
layer.bias:resize(nOutput)
layer.weight:resize(nOutput,nInput)
layer:reset()
end
-- borrowed from https://github.com/soumith/imagenet-multiGPU.torch/blob/master/train.lua
-- clear the intermediate states in the model before saving to disk
-- this saves lots of disk space
local function sanitize(net)
local list = net:listModules()
for _,val in ipairs(list) do
for name,field in pairs(val) do
if torch.type(field) == 'cdata' then val[name] = nil end
if name == 'homeGradBuffers' then val[name] = nil end
if name == 'input_gpu' then val['input_gpu'] = {} end
if name == 'gradOutput_gpu' then val['gradOutput_gpu'] = {} end
if name == 'gradInput_gpu' then val['gradInput_gpu'] = {} end
if (name == 'output' or name == 'gradInput') then
val[name] = field.new()
end
end
end
end
--------------------------------------------------------------------------------
-- packaging
--------------------------------------------------------------------------------
local utils = {}
utils.keep_top_k = keep_top_k
utils.VOCevaldet = VOCevaldet
utils.VOCap = VOCap
utils.convertCaffeModelToTorch = convertCaffeModelToTorch
utils.reshapeLastLinearLayer = reshapeLastLinearLayer
utils.sanitize = sanitize
return utils