-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdemo.py
137 lines (120 loc) · 5.66 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Test the scalability of SA for rotated diffusion while
highlighting the performance of different strength measures.
Try different values for classic_theta and evolution_theta.
"""
import numpy as np
import pyamg
# Ensure repeatability of tests
np.random.seed(625)
# Grid sizes to test
nlist = [100, 200, 300, 400]
factors_classic = np.zeros((len(nlist),))
complexity_classic = np.zeros((len(nlist),))
nnz_classic = np.zeros((len(nlist),))
sizelist_classic = np.zeros((len(nlist),))
factors_evo = np.zeros((len(nlist),))
complexity_evo = np.zeros((len(nlist),))
nnz_evo = np.zeros((len(nlist),))
sizelist_evo = np.zeros((len(nlist),))
factors_evo_root = np.zeros((len(nlist),))
complexity_evo_root = np.zeros((len(nlist),))
nnz_evo_root = np.zeros((len(nlist),))
sizelist_evo_root = np.zeros((len(nlist),))
run = 0
# Smoothed Aggregation Parameters
theta = np.pi / 8.0 # Angle of rotation
epsilon = 0.001 # Anisotropic coefficient
mcoarse = 10 # Max coarse grid size
prepost = ('gauss_seidel', # pre/post smoother
{'sweep': 'symmetric', 'iterations': 1})
smooth = ('energy', {'maxiter': 9, 'degree': 3}) # Prolongation Smoother
classic_theta = 0.0 # Classic Strength Measure
# Drop Tolerance
# evolution Strength Measure
evolution_theta = 4.0
# Drop Tolerance
for n in nlist:
nx = n
ny = n
print("Running Grid = (%d x %d)" % (nx, ny))
# Rotated Anisotropic Diffusion Operator
stencil = pyamg.gallery.diffusion_stencil_2d(type='FE', epsilon=epsilon, theta=theta)
A = pyamg.gallery.stencil_grid(stencil, (nx, ny), format='csr')
# Random initial guess, zero RHS
x0 = np.random.rand(A.shape[0])
b = np.zeros((A.shape[0],))
# Classic SA strength measure
ml = pyamg.smoothed_aggregation_solver(A,
max_coarse=mcoarse,
coarse_solver='pinv2',
presmoother=prepost,
postsmoother=prepost,
smooth=smooth,
strength=('symmetric', {'theta': classic_theta}))
resvec = []
x = ml.solve(b, x0=x0, maxiter=100, tol=1e-8, residuals=resvec)
factors_classic[run] = (resvec[-1] / resvec[0])**(1.0 / len(resvec))
complexity_classic[run] = ml.operator_complexity()
nnz_classic[run] = A.nnz
sizelist_classic[run] = A.shape[0]
# Evolution strength measure
ml = pyamg.smoothed_aggregation_solver(A,
max_coarse=mcoarse,
coarse_solver='pinv2',
presmoother=prepost,
postsmoother=prepost,
smooth=smooth,
strength=('evolution', {'epsilon': evolution_theta, 'k': 2}))
resvec = []
x = ml.solve(b, x0=x0, maxiter=100, tol=1e-8, residuals=resvec)
factors_evo[run] = (resvec[-1] / resvec[0])**(1.0 / len(resvec))
complexity_evo[run] = ml.operator_complexity()
nnz_evo[run] = A.nnz
sizelist_evo[run] = A.shape[0]
# Evolution strength measure
ml = pyamg.rootnode_solver(A,
max_coarse=mcoarse,
coarse_solver='pinv2',
presmoother=prepost,
postsmoother=prepost,
smooth=smooth,
strength=('evolution', {'epsilon': evolution_theta, 'k': 2}))
resvec = []
x = ml.solve(b, x0=x0, maxiter=100, tol=1e-8, residuals=resvec)
factors_evo_root[run] = (resvec[-1] / resvec[0])**(1.0 / len(resvec))
complexity_evo_root[run] = ml.operator_complexity()
nnz_evo_root[run] = A.nnz
sizelist_evo_root[run] = A.shape[0]
run += 1
# Print Problem Description
print("\nAMG Scalability Study for Ax = 0, x_init = rand\n")
print("Emphasis on Robustness of Evolution Strength ")
print("Measure and Root-Node Solver\n")
print("Rotated Anisotropic Diffusion in 2D")
print("Anisotropic Coefficient = %1.3e" % epsilon)
print("Rotation Angle = %1.3f" % theta)
# Print Tables
print("{:^9s} | {:^9s} | {:^9s} | {:^9s} | {:^9s}".format(
"n", "nnz", "rho", "OpCx", "Work"))
print("--------------------------------------------------------")
print(" Classic strength ")
print("--------------------------------------------------------")
for i, n in enumerate(sizelist_classic):
print("{:^9d} | {:^9d} | {:^9.2g} | {:^9.2g} | {:^9.2g}".format(
int(n), int(nnz_classic[i]), factors_classic[i], complexity_classic[i],
complexity_classic[i] / abs(np.log10(factors_classic[i]))))
print("--------------------------------------------------------")
print(" Evolution strength ")
print("--------------------------------------------------------")
for i, n in enumerate(sizelist_evo):
print("{:^9d} | {:^9d} | {:^9.2g} | {:^9.2g} | {:^9.2g}".format(
int(n), int(nnz_evo[i]), factors_evo[i], complexity_evo[i],
complexity_evo[i] / abs(np.log10(factors_evo[i]))))
print("--------------------------------------------------------")
print(" Evolution strength with Rootnode ")
print("--------------------------------------------------------")
for i, n in enumerate(sizelist_evo_root):
print("{:^9d} | {:^9d} | {:^9.2g} | {:^9.2g} | {:^9.2g}".format(
int(n), int(nnz_evo_root[i]), factors_evo_root[i], complexity_evo_root[i],
complexity_evo_root[i] / abs(np.log10(factors_evo_root[i]))))