-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdemo.py
138 lines (126 loc) · 4.29 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Test the convergence of a small recirculating flow problem that generates a
nonsymmetric matrix
Usage: python demo.py --solver 1
"""
import sys
import numpy as np
import pyamg
solvernum = 1
if '--solver' in sys.argv:
i = sys.argv.index('--solver')
solvernum = int(sys.argv[i+1])
else:
print('Usage: python demo.py --solver N, with N=1 or 2.\n'
'Test convergence of a small recirculating flow problem '
'that generates a nonsymmetric matrix n'
'Input Choice:\n'
'1: Run smoothed_aggregation_solver\n'
'2: Run rootnode_solver\n')
sys.exit()
# Recirculating flow, nonsymmetric matrix
data = pyamg.gallery.load_example('recirc_flow')
A = data['A'].tocsr()
B = data['B']
elements = data['elements']
vertice = data['vertices']
np.random.seed(625)
x0 = np.random.rand(A.shape[0])
b = A * np.random.rand(A.shape[0])
# For demonstration, show that a solver constructed for a symmetric
# operator fails for this matrix.
smooth = ('energy', {'krylov': 'cg'})
SA_build_args = {
'max_levels': 10,
'max_coarse': 25,
'coarse_solver': 'pinv2',
'symmetry': 'hermitian'}
SA_solve_args = {'cycle': 'V', 'maxiter': 15, 'tol': 1e-8}
strength = [('evolution', {'k': 2, 'epsilon': 4.0})]
presmoother = ('gauss_seidel', {'sweep': 'symmetric', 'iterations': 1})
postsmoother = ('gauss_seidel', {'sweep': 'symmetric', 'iterations': 1})
##
# Construct solver and solve
if solvernum == 1:
sa_symmetric = pyamg.smoothed_aggregation_solver(
A,
B=B,
smooth=smooth,
strength=strength,
presmoother=presmoother,
postsmoother=postsmoother,
**SA_build_args)
elif solvernum == 2:
sa_symmetric = pyamg.rootnode_solver(
A,
B=B,
smooth=smooth,
strength=strength,
presmoother=presmoother,
postsmoother=postsmoother,
**SA_build_args)
else:
raise ValueError("Enter a solver of 1 or 2")
sa_symmetric = pyamg.smoothed_aggregation_solver(
A,
B=B,
smooth=smooth,
strength=strength,
presmoother=presmoother,
postsmoother=postsmoother,
**SA_build_args)
resvec = []
x = sa_symmetric.solve(b, x0=x0, residuals=resvec, **SA_solve_args)
print("\nObserve that standard multigrid parameters for Hermitian systems\n" +
"yield a nonconvergent stand-alone solver.\n")
for i, r in enumerate(resvec):
print("residual at iteration {0:2}: {1:^6.2e}".format(i, r))
# Now, construct and solve with nonsymmetric SA parameters
smooth = ('energy', {'krylov': 'gmres', 'degree': 2})
SA_build_args['symmetry'] = 'nonsymmetric'
strength = [('evolution', {'k': 2, 'epsilon': 1.5})]
presmoother = ('gauss_seidel_nr', {'sweep': 'symmetric', 'iterations': 1})
postsmoother = ('gauss_seidel_nr', {'sweep': 'symmetric', 'iterations': 1})
improve_candidates = [
('gauss_seidel_nr', {
'sweep': 'symmetric', 'iterations': 4}), None]
# Construct solver and solve
if solvernum == 1:
sa_nonsymmetric = pyamg.smoothed_aggregation_solver(
A,
B=B,
smooth=smooth,
strength=strength,
presmoother=presmoother,
postsmoother=postsmoother,
improve_candidates=improve_candidates,
**SA_build_args)
elif solvernum == 2:
sa_nonsymmetric = pyamg.rootnode_solver(
A,
B=B,
smooth=smooth,
strength=strength,
presmoother=presmoother,
postsmoother=postsmoother,
improve_candidates=improve_candidates,
**SA_build_args)
else:
raise ValueError("Enter a solver of 1 or 2")
resvec = []
x = sa_nonsymmetric.solve(b, x0=x0, residuals=resvec, **SA_solve_args)
print("*************************************************************")
print("Now using nonsymmetric parameters for multigrid , we obtain a\n" +
"convergent stand-alone solver. \n")
for i, r in enumerate(resvec):
print("residual at iteration {0:2}: {1:^6.2e}".format(i, r))
##
# Now, we accelerate GMRES with the nonsymmetric solver to obtain
# a more efficient solver
SA_solve_args['accel'] = 'gmres'
resvec = []
x = sa_nonsymmetric.solve(b, x0=x0, residuals=resvec, **SA_solve_args)
print("*************************************************************")
print("Now, we use the nonsymmetric solver to accelerate GMRES. \n")
for i, r in enumerate(resvec):
print("residual at iteration {0:2}: {1:^6.2e}".format(i, r))